File: fdmbackwardsolver.cpp

package info (click to toggle)
quantlib 1.21-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 45,532 kB
  • sloc: cpp: 388,042; makefile: 6,661; sh: 4,381; lisp: 86
file content (209 lines) | stat: -rw-r--r-- 9,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Andreas Gaida
 Copyright (C) 2009 Ralph Schreyer
 Copyright (C) 2009 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file fdmbackwardsolver.cpp
*/

#include <ql/mathconstants.hpp>
#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>
#include <ql/methods/finitedifferences/solvers/fdmbackwardsolver.hpp>
#include <ql/methods/finitedifferences/schemes/douglasscheme.hpp>
#include <ql/methods/finitedifferences/schemes/craigsneydscheme.hpp>
#include <ql/methods/finitedifferences/schemes/cranknicolsonscheme.hpp>
#include <ql/methods/finitedifferences/schemes/hundsdorferscheme.hpp>
#include <ql/methods/finitedifferences/schemes/impliciteulerscheme.hpp>
#include <ql/methods/finitedifferences/schemes/expliciteulerscheme.hpp>
#include <ql/methods/finitedifferences/schemes/modifiedcraigsneydscheme.hpp>
#include <ql/methods/finitedifferences/schemes/methodoflinesscheme.hpp>
#include <ql/methods/finitedifferences/schemes/trbdf2scheme.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>


namespace QuantLib {
    
    FdmSchemeDesc::FdmSchemeDesc(FdmSchemeType aType, Real aTheta, Real aMu)
    : type(aType), theta(aTheta), mu(aMu) { }

    FdmSchemeDesc FdmSchemeDesc::Douglas() { 
        return FdmSchemeDesc(FdmSchemeDesc::DouglasType, 0.5, 0.0);
    }
    
    FdmSchemeDesc FdmSchemeDesc::CrankNicolson() {
        return FdmSchemeDesc(FdmSchemeDesc::CrankNicolsonType, 0.5, 0.0);
    }

    FdmSchemeDesc FdmSchemeDesc::CraigSneyd() {
        return FdmSchemeDesc(FdmSchemeDesc::CraigSneydType,0.5, 0.5);
    }
    
    FdmSchemeDesc FdmSchemeDesc::ModifiedCraigSneyd() { 
        return FdmSchemeDesc(FdmSchemeDesc::ModifiedCraigSneydType, 
                             1.0/3.0, 1.0/3.0);
    }
    
    FdmSchemeDesc FdmSchemeDesc::Hundsdorfer() {
        return FdmSchemeDesc(FdmSchemeDesc::HundsdorferType, 
                             0.5+std::sqrt(3.0)/6, 0.5);
    }
    
    FdmSchemeDesc FdmSchemeDesc::ModifiedHundsdorfer() {
        return FdmSchemeDesc(FdmSchemeDesc::HundsdorferType, 
                             1.0-std::sqrt(2.0)/2, 0.5);
    }
    
    FdmSchemeDesc FdmSchemeDesc::ExplicitEuler() {
        return FdmSchemeDesc(FdmSchemeDesc::ExplicitEulerType, 0.0, 0.0);
    }

    FdmSchemeDesc FdmSchemeDesc::ImplicitEuler() {
        return FdmSchemeDesc(FdmSchemeDesc::ImplicitEulerType, 0.0, 0.0);
    }

    FdmSchemeDesc FdmSchemeDesc::MethodOfLines(Real eps, Real relInitStepSize) {
        return FdmSchemeDesc(
            FdmSchemeDesc::MethodOfLinesType, eps, relInitStepSize);
    }

    FdmSchemeDesc FdmSchemeDesc::TrBDF2() {
        return FdmSchemeDesc(FdmSchemeDesc::TrBDF2Type, 2 - M_SQRT2, 1e-8);
    }

    FdmBackwardSolver::FdmBackwardSolver(
        const ext::shared_ptr<FdmLinearOpComposite>& map,
        const FdmBoundaryConditionSet& bcSet,
        const ext::shared_ptr<FdmStepConditionComposite>& condition,
        const FdmSchemeDesc& schemeDesc)
    : map_(map), bcSet_(bcSet),
      condition_((condition) != 0 ?
                     condition :
                     ext::make_shared<FdmStepConditionComposite>(
                         std::list<std::vector<Time> >(), FdmStepConditionComposite::Conditions())),
      schemeDesc_(schemeDesc) {}

    void FdmBackwardSolver::rollback(FdmBackwardSolver::array_type& rhs, 
                                     Time from, Time to,
                                     Size steps, Size dampingSteps) {

        const Time deltaT = from - to;
        const Size allSteps = steps + dampingSteps;
        const Time dampingTo = from - (deltaT*dampingSteps)/allSteps;

        if ((dampingSteps != 0U) && schemeDesc_.type != FdmSchemeDesc::ImplicitEulerType) {
            ImplicitEulerScheme implicitEvolver(map_, bcSet_);    
            FiniteDifferenceModel<ImplicitEulerScheme> 
                    dampingModel(implicitEvolver, condition_->stoppingTimes());
            dampingModel.rollback(rhs, from, dampingTo, 
                                  dampingSteps, *condition_);
        }

        switch (schemeDesc_.type) {
          case FdmSchemeDesc::HundsdorferType:
            {
                HundsdorferScheme hsEvolver(schemeDesc_.theta, schemeDesc_.mu, 
                                            map_, bcSet_);
                FiniteDifferenceModel<HundsdorferScheme> 
                               hsModel(hsEvolver, condition_->stoppingTimes());
                hsModel.rollback(rhs, dampingTo, to, steps, *condition_);
            }
            break;
          case FdmSchemeDesc::DouglasType:
            {
                DouglasScheme dsEvolver(schemeDesc_.theta, map_, bcSet_);
                FiniteDifferenceModel<DouglasScheme> 
                               dsModel(dsEvolver, condition_->stoppingTimes());
                dsModel.rollback(rhs, dampingTo, to, steps, *condition_);
            }
            break;
          case FdmSchemeDesc::CrankNicolsonType:
            {
              CrankNicolsonScheme cnEvolver(schemeDesc_.theta, map_, bcSet_);
              FiniteDifferenceModel<CrankNicolsonScheme>
                             cnModel(cnEvolver, condition_->stoppingTimes());
              cnModel.rollback(rhs, dampingTo, to, steps, *condition_);

            }
            break;
          case FdmSchemeDesc::CraigSneydType:
            {
                CraigSneydScheme csEvolver(schemeDesc_.theta, schemeDesc_.mu, 
                                           map_, bcSet_);
                FiniteDifferenceModel<CraigSneydScheme> 
                               csModel(csEvolver, condition_->stoppingTimes());
                csModel.rollback(rhs, dampingTo, to, steps, *condition_);
            }
            break;
          case FdmSchemeDesc::ModifiedCraigSneydType:
            {
                ModifiedCraigSneydScheme csEvolver(schemeDesc_.theta, 
                                                   schemeDesc_.mu,
                                                   map_, bcSet_);
                FiniteDifferenceModel<ModifiedCraigSneydScheme> 
                              mcsModel(csEvolver, condition_->stoppingTimes());
                mcsModel.rollback(rhs, dampingTo, to, steps, *condition_);
            }
            break;
          case FdmSchemeDesc::ImplicitEulerType:
            {
                ImplicitEulerScheme implicitEvolver(map_, bcSet_);
                FiniteDifferenceModel<ImplicitEulerScheme> 
                   implicitModel(implicitEvolver, condition_->stoppingTimes());
                implicitModel.rollback(rhs, from, to, allSteps, *condition_);
            }
            break;
          case FdmSchemeDesc::ExplicitEulerType:
            {
                ExplicitEulerScheme explicitEvolver(map_, bcSet_);
                FiniteDifferenceModel<ExplicitEulerScheme> 
                   explicitModel(explicitEvolver, condition_->stoppingTimes());
                explicitModel.rollback(rhs, dampingTo, to, steps, *condition_);
            }
            break;
          case FdmSchemeDesc::MethodOfLinesType:
            {
                MethodOfLinesScheme methodOfLines(
                    schemeDesc_.theta, schemeDesc_.mu, map_, bcSet_);
                FiniteDifferenceModel<MethodOfLinesScheme>
                   molModel(methodOfLines, condition_->stoppingTimes());
                molModel.rollback(rhs, dampingTo, to, steps, *condition_);
            }
            break;
          case FdmSchemeDesc::TrBDF2Type:
            {
                const FdmSchemeDesc trDesc
                    = FdmSchemeDesc::CraigSneyd();

                const ext::shared_ptr<CraigSneydScheme> hsEvolver(
                    ext::make_shared<CraigSneydScheme>(
                        trDesc.theta, trDesc.mu, map_, bcSet_));

                TrBDF2Scheme<CraigSneydScheme> trBDF2(
                    schemeDesc_.theta, map_, hsEvolver, bcSet_,schemeDesc_.mu);

                FiniteDifferenceModel<TrBDF2Scheme<CraigSneydScheme> >
                   trBDF2Model(trBDF2, condition_->stoppingTimes());
                trBDF2Model.rollback(rhs, dampingTo, to, steps, *condition_);
            }
            break;
          default:
            QL_FAIL("Unknown scheme type");
        }
    }
}