1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Ferdinando Ametrano
Copyright (C) 2006 Marco Bianchetti
Copyright (C) 2006 Silvia Frasson
Copyright (C) 2006 Mario Pucci
Copyright (C) 2006 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/models/marketmodels/driftcomputation/lmmdriftcalculator.hpp>
#include <ql/models/marketmodels/curvestates/lmmcurvestate.hpp>
namespace QuantLib {
LMMDriftCalculator::LMMDriftCalculator(const Matrix& pseudo,
const std::vector<Spread>& displacements,
const std::vector<Time>& taus,
Size numeraire,
Size alive)
: numberOfRates_(taus.size()), numberOfFactors_(pseudo.columns()),
isFullFactor_(numberOfFactors_ == numberOfRates_), numeraire_(numeraire), alive_(alive),
displacements_(displacements), oneOverTaus_(taus.size()), pseudo_(pseudo),
tmp_(taus.size(), 0.0), e_(pseudo_.columns(), pseudo_.rows(), 0.0), downs_(taus.size()),
ups_(taus.size()) {
// Check requirements
QL_REQUIRE(numberOfRates_>0, "Dim out of range");
QL_REQUIRE(displacements.size() == numberOfRates_,
"Displacements out of range");
QL_REQUIRE(pseudo.rows()==numberOfRates_,
"pseudo.rows() not consistent with dim");
QL_REQUIRE(pseudo.columns()>0 && pseudo.columns()<=numberOfRates_,
"pseudo.rows() not consistent with pseudo.columns()");
QL_REQUIRE(alive<numberOfRates_, "Alive out of bounds");
QL_REQUIRE(numeraire_<=numberOfRates_, "Numeraire larger than dim");
QL_REQUIRE(numeraire_>=alive, "Numeraire smaller than alive");
// Precompute 1/taus
for (Size i=0; i<taus.size(); ++i)
oneOverTaus_[i] = 1.0/taus[i];
// Compute covariance matrix from pseudoroot
const Disposable<Matrix> pT = transpose(pseudo_);
C_ = pseudo_*pT;
// Compute lower and upper extrema for (non reduced) drift calculation
for (Size i=alive_; i<numberOfRates_; ++i) {
downs_[i] = std::min(i+1, numeraire_);
ups_[i] = std::max(i+1, numeraire_);
}
}
void LMMDriftCalculator::compute(const LMMCurveState& cs,
std::vector<Real>& drifts) const {
compute(cs.forwardRates(), drifts);
}
void LMMDriftCalculator::compute(const std::vector<Rate>& fwds,
std::vector<Real>& drifts) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(fwds.size()==numberOfRates_, "numberOfRates <> dim");
QL_REQUIRE(drifts.size()==numberOfRates_, "drifts.size() <> dim");
#endif
if (isFullFactor_)
computePlain(fwds, drifts);
else
computeReduced(fwds, drifts);
}
void LMMDriftCalculator::computePlain(const LMMCurveState& cs,
std::vector<Real>& drifts) const {
computePlain(cs.forwardRates(), drifts);
}
void LMMDriftCalculator::computePlain(const std::vector<Rate>& forwards,
std::vector<Real>& drifts) const {
// Compute drifts without factor reduction,
// using directly the covariance matrix.
// Precompute forwards factor
Size i;
for(i=alive_; i<numberOfRates_; ++i)
tmp_[i] = (forwards[i]+displacements_[i]) /
(oneOverTaus_[i]+forwards[i]);
// Compute drifts
for (i=alive_; i<numberOfRates_; ++i) {
drifts[i] = std::inner_product(tmp_.begin()+downs_[i],
tmp_.begin()+ups_[i],
C_.row_begin(i)+downs_[i], 0.0);
if (numeraire_>i+1)
drifts[i] = -drifts[i];
}
}
void LMMDriftCalculator::computeReduced(const LMMCurveState& cs,
std::vector<Real>& drifts) const {
computeReduced(cs.forwardRates(), drifts);
}
void LMMDriftCalculator::computeReduced(const std::vector<Rate>& forwards,
std::vector<Real>& drifts) const {
// Compute drifts with factor reduction,
// using the pseudo square root of the covariance matrix.
// Precompute forwards factor
for (Size i=alive_; i<numberOfRates_; ++i)
tmp_[i] = (forwards[i]+displacements_[i]) /
(oneOverTaus_[i]+forwards[i]);
// Enforce initialization
for (Size r=0; r<numberOfFactors_; ++r)
e_[r][std::max(0,static_cast<Integer>(numeraire_)-1)] = 0.0;
// Now compute drifts: take the numeraire P_N (numeraire_=N)
// as the reference point, divide the summation into 3 steps,
// et impera:
// 1st step: the drift corresponding to the numeraire P_N is zero.
// (if N=0 no drift is null, if N=numberOfRates_ the last drift is null).
if (numeraire_>0) drifts[numeraire_-1] = 0.0;
// 2nd step: then, move backward from N-2 (included) back to
// alive (included) (if N=0 jumps to 3rd step, if N=numberOfRates_ the
// e_[r][N-1] are correctly initialized):
for (Integer i=static_cast<Integer>(numeraire_)-2;
i>=static_cast<Integer>(alive_); --i) {
drifts[i] = 0.0;
for (Size r=0; r<numberOfFactors_; ++r) {
e_[r][i] = e_[r][i+1] + tmp_[i+1] * pseudo_[i+1][r];
drifts[i] -= e_[r][i]*pseudo_[i][r];
}
/*
Matrix::column_iterator p1 = e_.column_begin(i);
Matrix::column_iterator end = e_.column_end(i);
Matrix::const_column_iterator p2 = e_.column_begin(i+1);
Matrix::const_row_iterator q1 = pseudo_.row_begin(i);
Matrix::const_row_iterator q2 = pseudo_.row_begin(i+1);
Real x = tmp_[i+1];
while (p1 != end) {
*p1 = *p2 + x*(*q2);
drifts[i] -= *p1*(*q1);
++p1; ++p2; ++q1; ++q2;
}
*/
}
// 3rd step: now, move forward from N (included) up to n (excluded)
// (if N=0 this is the only relevant computation):
for (Size i=numeraire_; i<numberOfRates_; ++i) {
drifts[i] = 0.0;
for (Size r=0; r<numberOfFactors_; ++r) {
if (i==0)
e_[r][i] = tmp_[i] * pseudo_[i][r];
else
e_[r][i] = e_[r][i-1] + tmp_[i] * pseudo_[i][r];
drifts[i] += e_[r][i]*pseudo_[i][r];
}
}
}
}
|