1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004, 2005, 2008 Klaus Spanderen
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file hestonmodel.hpp
\brief analytic pricing engine for a heston option
based on fourier transformation
*/
#include <ql/functional.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/integrals/simpsonintegral.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/math/integrals/trapezoidintegral.hpp>
#include <ql/math/integrals/discreteintegrals.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/math/integrals/exponentialintegrals.hpp>
#include <ql/instruments/payoffs.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>
#if defined(QL_PATCH_MSVC)
#pragma warning(disable: 4180)
#endif
namespace QuantLib {
namespace {
class integrand1 {
private:
const Real c_inf_;
const ext::function<Real(Real)> f_;
public:
integrand1(Real c_inf, const ext::function<Real(Real)>& f)
: c_inf_(c_inf), f_(f) {}
Real operator()(Real x) const {
if ((1.0-x)*c_inf_ > QL_EPSILON)
return f_(-std::log(0.5-0.5*x)/c_inf_)/((1.0-x)*c_inf_);
else
return 0.0;
}
};
class integrand2 {
private:
const Real c_inf_;
const ext::function<Real(Real)> f_;
public:
integrand2(Real c_inf, const ext::function<Real(Real)>& f)
: c_inf_(c_inf), f_(f) {}
Real operator()(Real x) const {
if (x*c_inf_ > QL_EPSILON) {
return f_(-std::log(x)/c_inf_)/(x*c_inf_);
} else {
return 0.0;
}
}
};
class integrand3 {
private:
const integrand2 int_;
public:
integrand3(Real c_inf, const ext::function<Real(Real)>& f)
: int_(c_inf, f) {}
Real operator()(Real x) const { return int_(1.0-x); }
};
class u_Max {
public:
u_Max(Real c_inf, Real epsilon)
: c_inf_(c_inf), logEpsilon_(std::log(epsilon)),
evaluations_(0) {}
Real operator()(Real u) const {
++evaluations_;
return c_inf_*u + std::log(u) + logEpsilon_;
}
Size evaluations() const { return evaluations_; }
private:
const Real c_inf_, logEpsilon_;
mutable Size evaluations_;
};
class uHat_Max {
public:
uHat_Max(Real v0T2, Real epsilon)
: v0T2_(v0T2), logEpsilon_(std::log(epsilon)),
evaluations_(0) {}
Real operator()(Real u) const {
++evaluations_;
return v0T2_*u*u + std::log(u) + logEpsilon_;
}
Size evaluations() const { return evaluations_; }
private:
const Real v0T2_, logEpsilon_;
mutable Size evaluations_;
};
}
// helper class for integration
class AnalyticHestonEngine::Fj_Helper {
public:
Fj_Helper(const VanillaOption::arguments& arguments,
const ext::shared_ptr<HestonModel>& model,
const AnalyticHestonEngine* engine,
ComplexLogFormula cpxLog,
Time term,
Real ratio,
Size j);
Fj_Helper(Real kappa,
Real theta,
Real sigma,
Real v0,
Real s0,
Real rho,
const AnalyticHestonEngine* engine,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j);
Fj_Helper(Real kappa,
Real theta,
Real sigma,
Real v0,
Real s0,
Real rho,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j);
Real operator()(Real phi) const;
private:
const Size j_;
// const VanillaOption::arguments& arg_;
const Real kappa_, theta_, sigma_, v0_;
const ComplexLogFormula cpxLog_;
// helper variables
const Time term_;
const Real x_, sx_, dd_;
const Real sigma2_, rsigma_;
const Real t0_;
// log branch counter
mutable int b_; // log branch counter
mutable Real g_km1_; // imag part of last log value
const AnalyticHestonEngine* const engine_;
};
AnalyticHestonEngine::Fj_Helper::Fj_Helper(
const VanillaOption::arguments& arguments,
const ext::shared_ptr<HestonModel>& model,
const AnalyticHestonEngine* const engine,
ComplexLogFormula cpxLog,
Time term, Real ratio, Size j)
: j_ (j), //arg_(arguments),
kappa_(model->kappa()), theta_(model->theta()),
sigma_(model->sigma()), v0_(model->v0()),
cpxLog_(cpxLog), term_(term),
x_(std::log(model->process()->s0()->value())),
sx_(std::log(ext::dynamic_pointer_cast<StrikedTypePayoff>
(arguments.payoff)->strike())),
dd_(x_-std::log(ratio)),
sigma2_(sigma_*sigma_),
rsigma_(model->rho()*sigma_),
t0_(kappa_ - ((j_== 1)? model->rho()*sigma_ : 0)),
b_(0), g_km1_(0),
engine_(engine)
{
}
AnalyticHestonEngine::Fj_Helper::Fj_Helper(Real kappa, Real theta,
Real sigma, Real v0, Real s0, Real rho,
const AnalyticHestonEngine* const engine,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j)
:
j_(j),
kappa_(kappa),
theta_(theta),
sigma_(sigma),
v0_(v0),
cpxLog_(cpxLog),
term_(term),
x_(std::log(s0)),
sx_(std::log(strike)),
dd_(x_-std::log(ratio)),
sigma2_(sigma_*sigma_),
rsigma_(rho*sigma_),
t0_(kappa - ((j== 1)? rho*sigma : 0)),
b_(0),
g_km1_(0),
engine_(engine)
{
}
AnalyticHestonEngine::Fj_Helper::Fj_Helper(Real kappa, Real theta,
Real sigma, Real v0, Real s0, Real rho,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j)
:
j_(j),
kappa_(kappa),
theta_(theta),
sigma_(sigma),
v0_(v0),
cpxLog_(cpxLog),
term_(term),
x_(std::log(s0)),
sx_(std::log(strike)),
dd_(x_-std::log(ratio)),
sigma2_(sigma_*sigma_),
rsigma_(rho*sigma_),
t0_(kappa - ((j== 1)? rho*sigma : 0)),
b_(0),
g_km1_(0),
engine_(0)
{
}
Real AnalyticHestonEngine::Fj_Helper::operator()(Real phi) const
{
const Real rpsig(rsigma_*phi);
const std::complex<Real> t1 = t0_+std::complex<Real>(0, -rpsig);
const std::complex<Real> d =
std::sqrt(t1*t1 - sigma2_*phi
*std::complex<Real>(-phi, (j_== 1)? 1 : -1));
const std::complex<Real> ex = std::exp(-d*term_);
const std::complex<Real> addOnTerm =
engine_ != 0 ? engine_->addOnTerm(phi, term_, j_) : Real(0.0);
if (cpxLog_ == Gatheral) {
if (phi != 0.0) {
if (sigma_ > 1e-5) {
const std::complex<Real> p = (t1-d)/(t1+d);
const std::complex<Real> g
= std::log((1.0 - p*ex)/(1.0 - p));
return
std::exp(v0_*(t1-d)*(1.0-ex)/(sigma2_*(1.0-ex*p))
+ (kappa_*theta_)/sigma2_*((t1-d)*term_-2.0*g)
+ std::complex<Real>(0.0, phi*(dd_-sx_))
+ addOnTerm
).imag()/phi;
}
else {
const std::complex<Real> td = phi/(2.0*t1)
*std::complex<Real>(-phi, (j_== 1)? 1 : -1);
const std::complex<Real> p = td*sigma2_/(t1+d);
const std::complex<Real> g = p*(1.0-ex);
return
std::exp(v0_*td*(1.0-ex)/(1.0-p*ex)
+ (kappa_*theta_)*(td*term_-2.0*g/sigma2_)
+ std::complex<Real>(0.0, phi*(dd_-sx_))
+ addOnTerm
).imag()/phi;
}
}
else {
// use l'Hospital's rule to get lim_{phi->0}
if (j_ == 1) {
const Real kmr = rsigma_-kappa_;
if (std::fabs(kmr) > 1e-7) {
return dd_-sx_
+ (std::exp(kmr*term_)*kappa_*theta_
-kappa_*theta_*(kmr*term_+1.0) ) / (2*kmr*kmr)
- v0_*(1.0-std::exp(kmr*term_)) / (2.0*kmr);
}
else
// \kappa = \rho * \sigma
return dd_-sx_ + 0.25*kappa_*theta_*term_*term_
+ 0.5*v0_*term_;
}
else {
return dd_-sx_
- (std::exp(-kappa_*term_)*kappa_*theta_
+kappa_*theta_*(kappa_*term_-1.0))/(2*kappa_*kappa_)
- v0_*(1.0-std::exp(-kappa_*term_))/(2*kappa_);
}
}
}
else if (cpxLog_ == BranchCorrection) {
const std::complex<Real> p = (t1+d)/(t1-d);
// next term: g = std::log((1.0 - p*std::exp(d*term_))/(1.0 - p))
std::complex<Real> g;
// the exp of the following expression is needed.
const std::complex<Real> e = std::log(p)+d*term_;
// does it fit to the machine precision?
if (std::exp(-e.real()) > QL_EPSILON) {
g = std::log((1.0 - p/ex)/(1.0 - p));
} else {
// use a "big phi" approximation
g = d*term_ + std::log(p/(p - 1.0));
if (g.imag() > M_PI || g.imag() <= -M_PI) {
// get back to principal branch of the complex logarithm
Real im = std::fmod(g.imag(), 2*M_PI);
if (im > M_PI)
im -= 2*M_PI;
else if (im <= -M_PI)
im += 2*M_PI;
g = std::complex<Real>(g.real(), im);
}
}
// be careful here as we have to use a log branch correction
// to deal with the discontinuities of the complex logarithm.
// the principal branch is not always the correct one.
// (s. A. Sepp, chapter 4)
// remark: there is still the change that we miss a branch
// if the order of the integration is not high enough.
const Real tmp = g.imag() - g_km1_;
if (tmp <= -M_PI)
++b_;
else if (tmp > M_PI)
--b_;
g_km1_ = g.imag();
g += std::complex<Real>(0, 2*b_*M_PI);
return std::exp(v0_*(t1+d)*(ex-1.0)/(sigma2_*(ex-p))
+ (kappa_*theta_)/sigma2_*((t1+d)*term_-2.0*g)
+ std::complex<Real>(0,phi*(dd_-sx_))
+ addOnTerm
).imag()/phi;
}
else {
QL_FAIL("unknown complex logarithm formula");
}
}
AnalyticHestonEngine::AP_Helper::AP_Helper(
Time term, Real fwd, Real strike, ComplexLogFormula cpxLog,
const AnalyticHestonEngine* const enginePtr)
: term_(term),
fwd_(fwd),
strike_(strike),
freq_(std::log(fwd/strike)),
cpxLog_(cpxLog),
enginePtr_(enginePtr) {
QL_REQUIRE(enginePtr != 0, "pricing engine required");
const Real v0 = enginePtr->model_->v0();
const Real kappa = enginePtr->model_->kappa();
const Real theta = enginePtr->model_->theta();
const Real sigma = enginePtr->model_->sigma();
const Real rho = enginePtr->model_->rho();
switch(cpxLog_) {
case AndersenPiterbarg:
vAvg_ = (1-std::exp(-kappa*term))*(v0 - theta)
/(kappa*term) + theta;
break;
case AndersenPiterbargOptCV:
vAvg_ = -8.0*std::log(enginePtr->chF(
std::complex<Real>(0, -0.5), term).real())/term;
break;
case AsymptoticChF:
phi_ = -(v0+term*kappa*theta)/sigma
* std::complex<Real>(std::sqrt(1-rho*rho), rho);
psi_ = std::complex<Real>(
(kappa- 0.5*rho*sigma)*(v0 + term*kappa*theta)
+ kappa*theta*std::log(4*(1-rho*rho)),
- ((0.5*rho*rho*sigma - kappa*rho)/std::sqrt(1-rho*rho)
*(v0 + kappa*theta*term)
- 2*kappa*theta*std::atan(rho/std::sqrt(1-rho*rho))))
/(sigma*sigma);
break;
default:
QL_FAIL("unknown control variate");
}
}
Real AnalyticHestonEngine::AP_Helper::operator()(Real u) const {
QL_REQUIRE( enginePtr_->addOnTerm(u, term_, 1)
== std::complex<Real>(0.0)
&& enginePtr_->addOnTerm(u, term_, 2)
== std::complex<Real>(0.0),
"only Heston model is supported");
const std::complex<Real> z(u, -0.5);
std::complex<Real> phiBS;
switch (cpxLog_) {
case AndersenPiterbarg:
case AndersenPiterbargOptCV:
phiBS = std::exp(
-0.5*vAvg_*term_*(z*z + std::complex<Real>(-z.imag(), z.real())));
break;
case AsymptoticChF:
phiBS = std::exp(u*phi_ + psi_);
break;
default:
QL_FAIL("unknown control variate");
}
return (std::exp(std::complex<Real>(0.0, u*freq_))
* (phiBS - enginePtr_->chF(z, term_)) / (u*u + 0.25)).real();
}
Real AnalyticHestonEngine::AP_Helper::controlVariateValue() const {
if (cpxLog_ == AndersenPiterbarg || cpxLog_ == AndersenPiterbargOptCV) {
return BlackCalculator(
Option::Call, strike_, fwd_, std::sqrt(vAvg_*term_))
.value();
}
else if (cpxLog_ == AsymptoticChF) {
const std::complex<Real> phiFreq(phi_.real(), phi_.imag() + freq_);
using namespace ExponentialIntegral;
return fwd_ - std::sqrt(strike_*fwd_)/M_PI*
(std::exp(psi_)*(
-2.0*Ci(-0.5*phiFreq)*std::sin(0.5*phiFreq)
+std::cos(0.5*phiFreq)*(M_PI+2.0*Si(0.5*phiFreq)))).real();
}
else
QL_FAIL("unknown control variate");
}
std::complex<Real> AnalyticHestonEngine::chF(
const std::complex<Real>& z, Time t) const {
const Real kappa = model_->kappa();
const Real sigma = model_->sigma();
const Real theta = model_->theta();
const Real rho = model_->rho();
const Real v0 = model_->v0();
const Real sigma2 = sigma*sigma;
if (sigma > 1e-4) {
const std::complex<Real> g
= kappa + rho*sigma*std::complex<Real>(z.imag(), -z.real());
const std::complex<Real> D = std::sqrt(
g*g + (z*z + std::complex<Real>(-z.imag(), z.real()))*sigma2);
const std::complex<Real> G = (g-D)/(g+D);
return std::exp(v0/sigma2*(1.0-std::exp(-D*t))/(1.0-G*std::exp(-D*t))
*(g-D) + kappa*theta/sigma2*((g-D)*t
-2.0*std::log((1.0-G*std::exp(-D*t))/(1.0-G))));
}
else {
const Real kt = kappa*t;
const Real ekt = std::exp(kt);
const Real e2kt = std::exp(2*kt);
const Real rho2 = rho*rho;
const std::complex<Real> zpi = z + std::complex<Real>(0.0, 1.0);
return std::exp(-(((theta - v0 + ekt*((-1 + kt)*theta + v0))
*z*zpi)/ekt)/(2.*kappa))
+ (std::exp(-(kt) - ((theta - v0 + ekt
*((-1 + kt)*theta + v0))*z*zpi)
/(2.*ekt*kappa))*rho*(2*theta + kt*theta -
v0 - kt*v0 + ekt*((-2 + kt)*theta + v0))
*(1.0 - std::complex<Real>(-z.imag(),z.real()))*z*z)
/(2.*kappa*kappa)*sigma
+ (std::exp(-2*kt - ((theta - v0 + ekt
*((-1 + kt)*theta + v0))*z*zpi)/(2.*ekt*kappa))*z*z*zpi
*(-2*rho2*square<Real>()(2*theta + kt*theta - v0 -
kt*v0 + ekt*((-2 + kt)*theta + v0))
*z*z*zpi + 2*kappa*v0*(-zpi
+ e2kt*(zpi + 4*rho2*z) - 2*ekt*(2*rho2*z
+ kt*(zpi + rho2*(2 + kt)*z))) + kappa*theta*(zpi + e2kt
*(-5.0*zpi - 24*rho2*z+ 2*kt*(zpi + 4*rho2*z)) +
4*ekt*(zpi + 6*rho2*z + kt*(zpi + rho2*(4 + kt)*z)))))
/(16.*square<Real>()(square<Real>()(kappa)))*sigma2;
}
}
std::complex<Real> AnalyticHestonEngine::lnChF(
const std::complex<Real>& z, Time T) const {
return std::log(chF(z, T));
}
AnalyticHestonEngine::AnalyticHestonEngine(
const ext::shared_ptr<HestonModel>& model,
Size integrationOrder)
: GenericModelEngine<HestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
evaluations_(0),
cpxLog_ (Gatheral),
integration_(new Integration(
Integration::gaussLaguerre(integrationOrder))),
andersenPiterbargEpsilon_(Null<Real>()) {
}
AnalyticHestonEngine::AnalyticHestonEngine(
const ext::shared_ptr<HestonModel>& model,
Real relTolerance, Size maxEvaluations)
: GenericModelEngine<HestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
evaluations_(0),
cpxLog_(Gatheral),
integration_(new Integration(Integration::gaussLobatto(
relTolerance, Null<Real>(), maxEvaluations))),
andersenPiterbargEpsilon_(Null<Real>()) {
}
AnalyticHestonEngine::AnalyticHestonEngine(
const ext::shared_ptr<HestonModel>& model,
ComplexLogFormula cpxLog,
const Integration& integration,
const Real andersenPiterbargEpsilon)
: GenericModelEngine<HestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
evaluations_(0),
cpxLog_(cpxLog),
integration_(new Integration(integration)),
andersenPiterbargEpsilon_(andersenPiterbargEpsilon) {
QL_REQUIRE( cpxLog_ != BranchCorrection
|| !integration.isAdaptiveIntegration(),
"Branch correction does not work in conjunction "
"with adaptive integration methods");
}
AnalyticHestonEngine::ComplexLogFormula
AnalyticHestonEngine::optimalControlVariate(
Time t, Real v0, Real kappa, Real theta, Real sigma, Real rho) {
if (t > 0.1 && (v0+t*kappa*theta)/sigma*std::sqrt(1-rho*rho) < 0.055) {
return AsymptoticChF;
}
else {
return AndersenPiterbargOptCV;
}
}
Size AnalyticHestonEngine::numberOfEvaluations() const {
return evaluations_;
}
void AnalyticHestonEngine::doCalculation(Real riskFreeDiscount,
Real dividendDiscount,
Real spotPrice,
Real strikePrice,
Real term,
Real kappa, Real theta, Real sigma, Real v0, Real rho,
const TypePayoff& type,
const Integration& integration,
const ComplexLogFormula cpxLog,
const AnalyticHestonEngine* const enginePtr,
Real& value,
Size& evaluations) {
const Real ratio = riskFreeDiscount/dividendDiscount;
evaluations = 0;
switch(cpxLog) {
case Gatheral:
case BranchCorrection: {
const Real c_inf = std::min(0.2, std::max(0.0001,
std::sqrt(1.0-rho*rho)/sigma))*(v0 + kappa*theta*term);
const Real p1 = integration.calculate(c_inf,
Fj_Helper(kappa, theta, sigma, v0, spotPrice, rho, enginePtr,
cpxLog, term, strikePrice, ratio, 1))/M_PI;
evaluations += integration.numberOfEvaluations();
const Real p2 = integration.calculate(c_inf,
Fj_Helper(kappa, theta, sigma, v0, spotPrice, rho, enginePtr,
cpxLog, term, strikePrice, ratio, 2))/M_PI;
evaluations += integration.numberOfEvaluations();
switch (type.optionType())
{
case Option::Call:
value = spotPrice*dividendDiscount*(p1+0.5)
- strikePrice*riskFreeDiscount*(p2+0.5);
break;
case Option::Put:
value = spotPrice*dividendDiscount*(p1-0.5)
- strikePrice*riskFreeDiscount*(p2-0.5);
break;
default:
QL_FAIL("unknown option type");
}
}
break;
case AndersenPiterbarg:
case AndersenPiterbargOptCV:
case AsymptoticChF:
case OptimalCV: {
const Real c_inf =
std::sqrt(1.0-rho*rho)*(v0 + kappa*theta*term)/sigma;
const Real fwdPrice = spotPrice / ratio;
const Real epsilon = enginePtr->andersenPiterbargEpsilon_
*M_PI/(std::sqrt(strikePrice*fwdPrice)*riskFreeDiscount);
const ext::function<Real()> uM = ext::bind(
Integration::andersenPiterbargIntegrationLimit,
c_inf, epsilon, v0, term);
AP_Helper cvHelper(term, fwdPrice, strikePrice,
(cpxLog == OptimalCV)
? optimalControlVariate(term, v0, kappa, theta, sigma, rho)
: cpxLog,
enginePtr
);
const Real cvValue = cvHelper.controlVariateValue();
const Real h_cv = integration.calculate(c_inf, cvHelper, uM)
* std::sqrt(strikePrice * fwdPrice)/M_PI;
evaluations += integration.numberOfEvaluations();
switch (type.optionType())
{
case Option::Call:
value = (cvValue + h_cv)*riskFreeDiscount;
break;
case Option::Put:
value = (cvValue + h_cv - (fwdPrice - strikePrice))*riskFreeDiscount;
break;
default:
QL_FAIL("unknown option type");
}
}
break;
default:
QL_FAIL("unknown complex log formula");
}
}
void AnalyticHestonEngine::calculate() const
{
// this is a european option pricer
QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
"not an European option");
// plain vanilla
ext::shared_ptr<PlainVanillaPayoff> payoff =
ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non plain vanilla payoff given");
const ext::shared_ptr<HestonProcess>& process = model_->process();
const Real riskFreeDiscount = process->riskFreeRate()->discount(
arguments_.exercise->lastDate());
const Real dividendDiscount = process->dividendYield()->discount(
arguments_.exercise->lastDate());
const Real spotPrice = process->s0()->value();
QL_REQUIRE(spotPrice > 0.0, "negative or null underlying given");
const Real strikePrice = payoff->strike();
const Real term = process->time(arguments_.exercise->lastDate());
doCalculation(riskFreeDiscount,
dividendDiscount,
spotPrice,
strikePrice,
term,
model_->kappa(),
model_->theta(),
model_->sigma(),
model_->v0(),
model_->rho(),
*payoff,
*integration_,
cpxLog_,
this,
results_.value,
evaluations_);
}
AnalyticHestonEngine::Integration::Integration(
Algorithm intAlgo,
const ext::shared_ptr<Integrator>& integrator)
: intAlgo_(intAlgo),
integrator_(integrator) { }
AnalyticHestonEngine::Integration::Integration(
Algorithm intAlgo,
const ext::shared_ptr<GaussianQuadrature>& gaussianQuadrature)
: intAlgo_(intAlgo),
gaussianQuadrature_(gaussianQuadrature) { }
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussLobatto(Real relTolerance,
Real absTolerance,
Size maxEvaluations) {
return Integration(GaussLobatto,
ext::shared_ptr<Integrator>(
new GaussLobattoIntegral(maxEvaluations,
absTolerance,
relTolerance,
false)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussKronrod(Real absTolerance,
Size maxEvaluations) {
return Integration(GaussKronrod,
ext::shared_ptr<Integrator>(
new GaussKronrodAdaptive(absTolerance,
maxEvaluations)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::simpson(Real absTolerance,
Size maxEvaluations) {
return Integration(Simpson,
ext::shared_ptr<Integrator>(
new SimpsonIntegral(absTolerance,
maxEvaluations)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::trapezoid(Real absTolerance,
Size maxEvaluations) {
return Integration(Trapezoid,
ext::shared_ptr<Integrator>(
new TrapezoidIntegral<Default>(absTolerance,
maxEvaluations)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussLaguerre(Size intOrder) {
QL_REQUIRE(intOrder <= 192, "maximum integraton order (192) exceeded");
return Integration(GaussLaguerre,
ext::shared_ptr<GaussianQuadrature>(
new GaussLaguerreIntegration(intOrder)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussLegendre(Size intOrder) {
return Integration(GaussLegendre,
ext::shared_ptr<GaussianQuadrature>(
new GaussLegendreIntegration(intOrder)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussChebyshev(Size intOrder) {
return Integration(GaussChebyshev,
ext::shared_ptr<GaussianQuadrature>(
new GaussChebyshevIntegration(intOrder)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussChebyshev2nd(Size intOrder) {
return Integration(GaussChebyshev2nd,
ext::shared_ptr<GaussianQuadrature>(
new GaussChebyshev2ndIntegration(intOrder)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::discreteSimpson(Size evaluations) {
return Integration(
DiscreteSimpson, ext::shared_ptr<Integrator>(
new DiscreteSimpsonIntegrator(evaluations)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::discreteTrapezoid(Size evaluations) {
return Integration(
DiscreteTrapezoid, ext::shared_ptr<Integrator>(
new DiscreteTrapezoidIntegrator(evaluations)));
}
Size AnalyticHestonEngine::Integration::numberOfEvaluations() const {
if (integrator_ != 0) {
return integrator_->numberOfEvaluations();
} else if (gaussianQuadrature_ != 0) {
return gaussianQuadrature_->order();
}
else {
QL_FAIL("neither Integrator nor GaussianQuadrature given");
}
}
bool AnalyticHestonEngine::Integration::isAdaptiveIntegration() const {
return intAlgo_ == GaussLobatto
|| intAlgo_ == GaussKronrod
|| intAlgo_ == Simpson
|| intAlgo_ == Trapezoid;
}
Real AnalyticHestonEngine::Integration::calculate(
Real c_inf,
const ext::function<Real(Real)>& f,
const ext::function<Real()>& maxBound) const {
Real retVal;
switch(intAlgo_) {
case GaussLaguerre:
retVal = (*gaussianQuadrature_)(f);
break;
case GaussLegendre:
case GaussChebyshev:
case GaussChebyshev2nd:
retVal = (*gaussianQuadrature_)(integrand1(c_inf, f));
break;
case Simpson:
case Trapezoid:
case GaussLobatto:
case GaussKronrod:
if (maxBound != 0 && maxBound() != Null<Real>())
retVal = (*integrator_)(f, 0.0, maxBound());
else
retVal = (*integrator_)(integrand2(c_inf, f), 0.0, 1.0);
break;
case DiscreteTrapezoid:
case DiscreteSimpson:
if (maxBound != 0 && maxBound() != Null<Real>())
retVal = (*integrator_)(f, 0.0, maxBound());
else
retVal = (*integrator_)(integrand3(c_inf, f), 0.0, 1.0);
break;
default:
QL_FAIL("unknwon integration algorithm");
}
return retVal;
}
Real AnalyticHestonEngine::Integration::calculate(
Real c_inf,
const ext::function<Real(Real)>& f,
Real maxBound) const {
return AnalyticHestonEngine::Integration::calculate(
c_inf, f,
ext::bind(&constant<Real, Real>::operator(),
constant<Real, Real>(maxBound), 1.0));
}
Real AnalyticHestonEngine::Integration::andersenPiterbargIntegrationLimit(
Real c_inf, Real epsilon, Real v0, Real t) {
const Real uMaxGuess = -std::log(epsilon)/c_inf;
const Real uMaxStep = 0.1*uMaxGuess;
const Real uMax = Brent().solve(u_Max(c_inf, epsilon),
QL_EPSILON*uMaxGuess, uMaxGuess, uMaxStep);
const Real uHatMax = Brent().solve(uHat_Max(0.5*v0*t, epsilon),
QL_EPSILON*std::sqrt(uMaxGuess),
std::sqrt(uMaxGuess), 0.1*std::sqrt(uMaxGuess));
return std::max(uMax, uHatMax);
}
}
|