1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/processes/batesprocess.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/poissondistribution.hpp>
namespace QuantLib {
BatesProcess::BatesProcess(
const Handle<YieldTermStructure>& riskFreeRate,
const Handle<YieldTermStructure>& dividendYield,
const Handle<Quote>& s0,
Real v0, Real kappa,
Real theta, Real sigma, Real rho,
Real lambda, Real nu, Real delta,
HestonProcess::Discretization d)
: HestonProcess(riskFreeRate, dividendYield,
s0, v0, kappa, theta, sigma, rho, d),
lambda_(lambda), delta_(delta), nu_(nu),
m_(std::exp(nu+0.5*delta*delta)-1) {
}
Disposable<Array> BatesProcess::drift(Time t, const Array& x) const {
Array retVal = HestonProcess::drift(t, x);
retVal[0] -= lambda_*m_;
return retVal;
}
Disposable<Array> BatesProcess::evolve(Time t0, const Array& x0,
Time dt, const Array& dw) const {
const Size hestonFactors = HestonProcess::factors();
Real p = cumNormalDist_(dw[hestonFactors]);
if (p<0.0)
p = 0.0;
else if (p >= 1.0)
p = 1.0-QL_EPSILON;
const Real n = InverseCumulativePoisson(lambda_*dt)(p);
Array retVal = HestonProcess::evolve(t0, x0, dt, dw);
retVal[0] *=
std::exp(-lambda_*m_*dt + nu_*n+delta_*std::sqrt(n)*dw[hestonFactors+1]);
return retVal;
}
Size BatesProcess::factors() const {
return HestonProcess::factors() + 2;
}
Real BatesProcess::lambda() const {
return lambda_;
}
Real BatesProcess::nu() const {
return nu_;
}
Real BatesProcess::delta() const {
return delta_;
}
}
|