1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004, 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/processes/eulerdiscretization.hpp>
namespace QuantLib {
Disposable<Array> EulerDiscretization::drift(
const StochasticProcess& process,
Time t0, const Array& x0,
Time dt) const {
return process.drift(t0, x0)*dt;
}
Real EulerDiscretization::drift(const StochasticProcess1D& process,
Time t0, Real x0, Time dt) const {
return process.drift(t0, x0)*dt;
}
Disposable<Matrix> EulerDiscretization::diffusion(
const StochasticProcess& process,
Time t0, const Array& x0,
Time dt) const {
return process.diffusion(t0, x0) * std::sqrt(dt);
}
Real EulerDiscretization::diffusion(const StochasticProcess1D& process,
Time t0, Real x0, Time dt) const {
return process.diffusion(t0, x0) * std::sqrt(dt);
}
Disposable<Matrix> EulerDiscretization::covariance(
const StochasticProcess& process,
Time t0, const Array& x0,
Time dt) const {
Matrix sigma = process.diffusion(t0, x0);
Matrix result = sigma*transpose(sigma)*dt;
return result;
}
Real EulerDiscretization::variance(const StochasticProcess1D& process,
Time t0, Real x0, Time dt) const {
Real sigma = process.diffusion(t0, x0);
return sigma*sigma*dt;
}
}
|