1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Banca Profilo S.p.A.
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/processes/g2process.hpp>
#include <ql/processes/eulerdiscretization.hpp>
namespace QuantLib {
G2Process::G2Process(Real a, Real sigma, Real b, Real eta, Real rho)
: x0_(0.0), y0_(0.0), a_(a), sigma_(sigma), b_(b), eta_(eta), rho_(rho),
xProcess_(new QuantLib::OrnsteinUhlenbeckProcess(a, sigma, 0.0)),
yProcess_(new QuantLib::OrnsteinUhlenbeckProcess(b, eta, 0.0)) {}
Size G2Process::size() const {
return 2;
}
Disposable<Array> G2Process::initialValues() const {
Array tmp(2);
tmp[0] = x0_;
tmp[1] = y0_;
return tmp;
}
Disposable<Array> G2Process::drift(Time t, const Array& x) const {
Array tmp(2);
tmp[0] = xProcess_->drift(t, x[0]);
tmp[1] = yProcess_->drift(t, x[1]);
return tmp;
}
Disposable<Matrix> G2Process::diffusion(Time, const Array&) const {
/* the correlation matrix is
| 1 rho |
| rho 1 |
whose square root (which is used here) is
| 1 0 |
| rho sqrt(1-rho^2) |
*/
Matrix tmp(2,2);
Real sigma1 = sigma_;
Real sigma2 = eta_;
tmp[0][0] = sigma1; tmp[0][1] = 0.0;
tmp[1][0] = rho_*sigma1; tmp[1][1] = std::sqrt(1.0-rho_*rho_)*sigma2;
return tmp;
}
Disposable<Array> G2Process::expectation(Time t0, const Array& x0,
Time dt) const {
Array tmp(2);
tmp[0] = xProcess_->expectation(t0, x0[0], dt);
tmp[1] = yProcess_->expectation(t0, x0[1], dt);
return tmp;
}
Disposable<Matrix> G2Process::stdDeviation(Time t0, const Array& x0,
Time dt) const {
/* the correlation matrix is
| 1 rho |
| rho 1 |
whose square root (which is used here) is
| 1 0 |
| rho sqrt(1-rho^2) |
*/
Matrix tmp(2,2);
Real sigma1 = xProcess_->stdDeviation(t0, x0[0], dt);
Real sigma2 = yProcess_->stdDeviation(t0, x0[1], dt);
Real expa = std::exp(-a_*dt), expb = std::exp(-b_*dt);
Real H = (rho_*sigma_*eta_)/(a_+b_)*(1-expa*expb);
Real den =
(0.5*sigma_*eta_)*std::sqrt((1-expa*expa)*(1-expb*expb)/(a_*b_));
Real newRho = H/den;
tmp[0][0] = sigma1;
tmp[0][1] = 0.0;
tmp[1][0] = newRho*sigma2;
tmp[1][1] = std::sqrt(1.0-newRho*newRho)*sigma2;
return tmp;
}
Disposable<Matrix> G2Process::covariance(Time t0, const Array& x0,
Time dt) const {
Matrix sigma = stdDeviation(t0, x0, dt);
Matrix result = sigma*transpose(sigma);
return result;
}
Real G2Process::x0() const {
return x0_;
}
Real G2Process::y0() const {
return y0_;
}
Real G2Process::a() const {
return a_;
}
Real G2Process::sigma() const {
return sigma_;
}
Real G2Process::b() const {
return b_;
}
Real G2Process::eta() const {
return eta_;
}
Real G2Process::rho() const {
return rho_;
}
G2ForwardProcess::G2ForwardProcess(Real a, Real sigma, Real b,
Real eta, Real rho)
: x0_(0.0), y0_(0.0), a_(a), sigma_(sigma), b_(b), eta_(eta), rho_(rho),
xProcess_(new QuantLib::OrnsteinUhlenbeckProcess(a, sigma, 0.0)),
yProcess_(new QuantLib::OrnsteinUhlenbeckProcess(b, eta, 0.0)) {}
Size G2ForwardProcess::size() const {
return 2;
}
Disposable<Array> G2ForwardProcess::initialValues() const {
Array tmp(2);
tmp[0] = x0_;
tmp[1] = y0_;
return tmp;
}
Disposable<Array> G2ForwardProcess::drift(Time t, const Array& x) const {
Array tmp(2);
tmp[0] = xProcess_->drift(t, x[0]) + xForwardDrift(t, T_);
tmp[1] = yProcess_->drift(t, x[1]) + yForwardDrift(t, T_);
return tmp;
}
Disposable<Matrix> G2ForwardProcess::diffusion(Time, const Array&) const {
Matrix tmp(2,2);
Real sigma1 = sigma_;
Real sigma2 = eta_;
tmp[0][0] = sigma1; tmp[0][1] = 0.0;
tmp[1][0] = rho_*sigma1; tmp[1][1] = std::sqrt(1.0-rho_*rho_)*sigma2;
return tmp;
}
Disposable<Array> G2ForwardProcess::expectation(Time t0, const Array& x0,
Time dt) const {
Array tmp(2);
tmp[0] = xProcess_->expectation(t0, x0[0], dt) - Mx_T(t0, t0+dt, T_);
tmp[1] = yProcess_->expectation(t0, x0[1], dt) - My_T(t0, t0+dt, T_);
return tmp;
}
Disposable<Matrix> G2ForwardProcess::stdDeviation(Time t0, const Array& x0,
Time dt) const {
Matrix tmp(2,2);
Real sigma1 = xProcess_->stdDeviation(t0, x0[0], dt);
Real sigma2 = yProcess_->stdDeviation(t0, x0[1], dt);
Real expa = std::exp(-a_*dt), expb = std::exp(-b_*dt);
Real H = (rho_*sigma_*eta_)/(a_+b_)*(1-expa*expb);
Real den =
(0.5*sigma_*eta_)*std::sqrt((1-expa*expa)*(1-expb*expb)/(a_*b_));
Real newRho = H/den;
tmp[0][0] = sigma1;
tmp[0][1] = 0.0;
tmp[1][0] = newRho*sigma2;
tmp[1][1] = std::sqrt(1.0-newRho*newRho)*sigma2;
return tmp;
}
Disposable<Matrix> G2ForwardProcess::covariance(Time t0, const Array& x0,
Time dt) const {
Matrix sigma = stdDeviation(t0, x0, dt);
Matrix result = sigma*transpose(sigma);
return result;
}
Real G2ForwardProcess::xForwardDrift(Time t, Time T) const {
Real expatT = std::exp(-a_*(T-t));
Real expbtT = std::exp(-b_*(T-t));
return -(sigma_*sigma_/a_) * (1-expatT)
- (rho_*sigma_*eta_/b_) * (1-expbtT);
}
Real G2ForwardProcess::yForwardDrift(Time t, Time T) const {
Real expatT = std::exp(-a_*(T-t));
Real expbtT = std::exp(-b_*(T-t));
return -(eta_*eta_/b_) * (1-expbtT)
- (rho_*sigma_*eta_/a_) * (1-expatT);
}
Real G2ForwardProcess::Mx_T(Real s, Real t, Real T) const {
Real M;
M = ( (sigma_*sigma_)/(a_*a_) + (rho_*sigma_*eta_)/(a_*b_) )
* (1-std::exp(-a_*(t-s)));
M += -(sigma_*sigma_)/(2*a_*a_) *
(std::exp(-a_*(T-t))-std::exp(-a_*(T+t-2*s)));
M += -(rho_*sigma_*eta_)/(b_*(a_+b_))
* (std::exp(-b_*(T-t)) -std::exp(-b_*T-a_*t+(a_+b_)*s));
return M;
}
Real G2ForwardProcess::My_T(Real s, Real t, Real T) const {
Real M;
M = ( (eta_*eta_)/(b_*b_) + (rho_*sigma_*eta_)/(a_*b_) )
* (1-std::exp(-b_*(t-s)));
M += -(eta_*eta_)/(2*b_*b_) *
(std::exp(-b_*(T-t))-std::exp(-b_*(T+t-2*s)));
M += -(rho_*sigma_*eta_)/(a_*(a_+b_))
* (std::exp(-a_*(T-t))-std::exp(-a_*T-b_*t+(a_+b_)*s));
return M;
}
}
|