1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Yee Man Chan
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/processes/gjrgarchprocess.hpp>
#include <ql/processes/eulerdiscretization.hpp>
namespace QuantLib {
GJRGARCHProcess::GJRGARCHProcess(
const Handle<YieldTermStructure>& riskFreeRate,
const Handle<YieldTermStructure>& dividendYield,
const Handle<Quote>& s0, Real v0,
Real omega, Real alpha, Real beta,
Real gamma, Real lambda, Real daysPerYear, Discretization d)
: StochasticProcess(ext::shared_ptr<discretization>(
new EulerDiscretization)),
riskFreeRate_(riskFreeRate), dividendYield_(dividendYield), s0_(s0),
v0_(v0), omega_(omega), alpha_(alpha),
beta_(beta), gamma_(gamma), lambda_(lambda), daysPerYear_(daysPerYear),
discretization_(d) {
registerWith(riskFreeRate_);
registerWith(dividendYield_);
registerWith(s0_);
}
Size GJRGARCHProcess::size() const {
return 2;
}
Disposable<Array> GJRGARCHProcess::initialValues() const {
Array tmp(2);
tmp[0] = s0_->value();
tmp[1] = daysPerYear_*v0_;
return tmp;
}
Disposable<Array> GJRGARCHProcess::drift(Time t, const Array& x) const {
Array tmp(2);
const Real N = CumulativeNormalDistribution()(lambda_);
const Real n = std::exp(-lambda_*lambda_/2.0)/std::sqrt(2*M_PI);
const Real q2 = 1.0 + lambda_*lambda_;
const Real q3 = lambda_*n + N + lambda_*lambda_*N;
const Real vol = (x[1] > 0.0) ? std::sqrt(x[1])
: (discretization_ == Reflection) ? - std::sqrt(-x[1])
: 0.0;
tmp[0] = riskFreeRate_->forwardRate(t, t, Continuous)
- dividendYield_->forwardRate(t, t, Continuous)
- 0.5 * vol * vol;
tmp[1] = daysPerYear_*daysPerYear_*omega_ + daysPerYear_*(beta_
+ alpha_*q2 + gamma_*q3 - 1.0) *
((discretization_==PartialTruncation) ? x[1] : vol*vol);
return tmp;
}
Disposable<Matrix> GJRGARCHProcess::diffusion(Time, const Array& x) const {
/* the correlation matrix is
| 1 rho |
| rho 1 |
whose square root (which is used here) is
| 1 0 |
| rho std::sqrt(1-rho^2) |
*/
Matrix tmp(2,2);
const Real N = CumulativeNormalDistribution()(lambda_);
const Real n = std::exp(-lambda_*lambda_/2.0)/std::sqrt(2*M_PI);
const Real sigma2 = 2.0 + 4.0*lambda_*lambda_;
const Real q3 = lambda_*n + N + lambda_*lambda_*N;
const Real Eml_e4 = lambda_*lambda_*lambda_*n + 5.0*lambda_*n
+ 3.0*N + lambda_*lambda_*lambda_*lambda_*N
+ 6.0*lambda_*lambda_*N;
const Real sigma3 = Eml_e4 - q3*q3;
const Real sigma12 = -2.0*lambda_;
const Real sigma13 = -2.0*n - 2*lambda_*N;
const Real sigma23 = 2.0*N + sigma12*sigma13;
const Real vol = (x[1] > 0.0) ? std::sqrt(x[1])
: (discretization_ == Reflection) ? - std::sqrt(-x[1])
: 1e-8; // set vol to (almost) zero but still
// expose some correlation information
const Real rho1 = std::sqrt(daysPerYear_)*(alpha_*sigma12
+ gamma_*sigma13) * vol * vol;
const Real rho2 = vol*vol*std::sqrt(daysPerYear_)
*std::sqrt(alpha_*alpha_*(sigma2 - sigma12*sigma12)
+ gamma_*gamma_*(sigma3 - sigma13*sigma13)
+ 2.0*alpha_*gamma_*(sigma23 - sigma12*sigma13));
// tmp[0][0], tmp[0][1] are the coefficients of dW_1 and dW_2
// in asset return stochastic process
tmp[0][0] = vol; tmp[0][1] = 0.0;
tmp[1][0] = rho1; tmp[1][1] = rho2;
return tmp;
}
Disposable<Array> GJRGARCHProcess::apply(const Array& x0,
const Array& dx) const {
Array tmp(2);
tmp[0] = x0[0] * std::exp(dx[0]);
tmp[1] = x0[1] + dx[1];
return tmp;
}
Disposable<Array> GJRGARCHProcess::evolve(Time t0, const Array& x0,
Time dt, const Array& dw) const {
Array retVal(2);
Real vol, mu, nu;
const Real sdt = std::sqrt(dt);
const Real N = CumulativeNormalDistribution()(lambda_);
const Real n = std::exp(-lambda_*lambda_/2.0)/std::sqrt(2*M_PI);
const Real sigma2 = 2.0 + 4.0*lambda_*lambda_;
const Real q2 = 1.0 + lambda_*lambda_;
const Real q3 = lambda_*n + N + lambda_*lambda_*N;
const Real Eml_e4 = lambda_*lambda_*lambda_*n + 5.0*lambda_*n
+ 3.0*N + lambda_*lambda_*lambda_*lambda_*N
+ 6.0*lambda_*lambda_*N;
const Real sigma3 = Eml_e4 - q3*q3;
const Real sigma12 = -2.0*lambda_;
const Real sigma13 = -2.0*n - 2*lambda_*N;
const Real sigma23 = 2.0*N + sigma12*sigma13;
const Real rho1 = std::sqrt(daysPerYear_)*(alpha_*sigma12 + gamma_*sigma13);
const Real rho2 = std::sqrt(daysPerYear_)
*std::sqrt(alpha_*alpha_*(sigma2 - sigma12*sigma12)
+ gamma_*gamma_*(sigma3 - sigma13*sigma13)
+ 2.0*alpha_*gamma_*(sigma23 - sigma12*sigma13));
switch (discretization_) {
// For the definition of PartialTruncation, FullTruncation
// and Reflection see Lord, R., R. Koekkoek and D. van Dijk (2006),
// "A Comparison of biased simulation schemes for
// stochastic volatility models",
// Working Paper, Tinbergen Institute
case PartialTruncation:
vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous)
- 0.5 * vol * vol;
nu = daysPerYear_*daysPerYear_*omega_
+ daysPerYear_*(beta_ + alpha_*q2 + gamma_*q3 - 1.0) * x0[1];
retVal[0] = x0[0] * std::exp(mu*dt+vol*dw[0]*sdt);
retVal[1] = x0[1] + nu*dt + sdt*vol*vol*(rho1*dw[0] + rho2*dw[1]);
break;
case FullTruncation:
vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous)
- 0.5 * vol * vol;
nu = daysPerYear_*daysPerYear_*omega_
+ daysPerYear_*(beta_ + alpha_*q2 + gamma_*q3 - 1.0) * vol *vol;
retVal[0] = x0[0] * std::exp(mu*dt+vol*dw[0]*sdt);
retVal[1] = x0[1] + nu*dt + sdt*vol*vol*(rho1*dw[0] + rho2*dw[1]);
break;
case Reflection:
vol = std::sqrt(std::fabs(x0[1]));
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous)
- 0.5 * vol*vol;
nu = daysPerYear_*daysPerYear_*omega_
+ daysPerYear_*(beta_ + alpha_*q2 + gamma_*q3 - 1.0) * vol * vol;
retVal[0] = x0[0]*std::exp(mu*dt+vol*dw[0]*sdt);
retVal[1] = vol*vol
+nu*dt + sdt*vol*vol*(rho1*dw[0] + rho2*dw[1]);
break;
default:
QL_FAIL("unknown discretization schema");
}
return retVal;
}
const Handle<Quote>& GJRGARCHProcess::s0() const {
return s0_;
}
const Handle<YieldTermStructure>& GJRGARCHProcess::dividendYield() const {
return dividendYield_;
}
const Handle<YieldTermStructure>& GJRGARCHProcess::riskFreeRate() const {
return riskFreeRate_;
}
Time GJRGARCHProcess::time(const Date& d) const {
return riskFreeRate_->dayCounter().yearFraction(
riskFreeRate_->referenceDate(), d);
}
}
|