1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/processes/gsrprocesscore.hpp>
#include <cmath>
using std::exp;
using std::pow;
namespace QuantLib {
namespace detail {
GsrProcessCore::GsrProcessCore(const Array ×, const Array &vols,
const Array &reversions, const Real T)
: times_(times), vols_(vols), reversions_(reversions),
T_(T), revZero_(reversions.size(), false) {
QL_REQUIRE(times.size() == vols.size() - 1,
"number of volatilities ("
<< vols.size() << ") compared to number of times ("
<< times_.size() << " must be bigger by one");
QL_REQUIRE(times.size() == reversions.size() - 1 || reversions.size() == 1,
"number of reversions ("
<< vols.size() << ") compared to number of times ("
<< times_.size() << " must be bigger by one, or exactly "
"1 reversion must be given");
for (int i = 0; i < ((int)times.size()) - 1; i++)
QL_REQUIRE(times[i] < times[i + 1], "times must be increasing ("
<< times[i] << "@" << i << " , "
<< times[i + 1] << "@" << i + 1
<< ")");
flushCache();
}
void GsrProcessCore::flushCache() const {
for (int i = 0; i < (int)reversions_.size(); i++)
// small reversions cause numerical problems, so we keep them
// away from zero
if (std::fabs(reversions_[i]) < 1E-4)
revZero_[i] = true;
else
revZero_[i] = false;
cache1_.clear();
cache2a_.clear();
cache2b_.clear();
cache3_.clear();
cache4_.clear();
cache5_.clear();
}
Real GsrProcessCore::expectation_x0dep_part(const Time w, const Real xw,
const Time dt) const {
Real t = w + dt;
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k = cache1_.find(key);
if (k != cache1_.end())
return xw * (k->second);
// A(w,t)x(w)
Real res2 = 1.0;
for (int i = lowerIndex(w); i <= upperIndex(t) - 1; i++) {
res2 *= exp(-rev(i) * (cappedTime(i + 1, t) - flooredTime(i, w)));
}
cache1_.insert(std::make_pair(key, res2));
return res2 * xw;
}
Real GsrProcessCore::expectation_rn_part(const Time w,
const Time dt) const {
Real t = w + dt;
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k =
cache2a_.find(key);
if (k != cache2a_.end())
return k->second;
Real res = 0.0;
// \int A(s,t)y(s)
for (int k = lowerIndex(w); k <= upperIndex(t) - 1; k++) {
// l<k
for (int l = 0; l <= k - 1; l++) {
Real res2 = 1.0;
// alpha_l
res2 *= revZero(l) ? vol(l) * vol(l) * (time2(l + 1) - time2(l))
: vol(l) * vol(l) / (2.0 * rev(l)) *
(1.0 - exp(-2.0 * rev(l) *
(time2(l + 1) - time2(l))));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res2 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// beta_j (j<k)
for (int j = l + 1; j <= k - 1; j++)
res2 *= exp(-2.0 * rev(j) * (time2(j + 1) - time2(j)));
// zeta_k beta_k
res2 *=
revZero(k)
? 2.0 * time2(k) - flooredTime(k, w) -
cappedTime(k + 1, t) -
2.0 * (time2(k) - cappedTime(k + 1, t))
: (exp(rev(k) * (2.0 * time2(k) - flooredTime(k, w) -
cappedTime(k + 1, t))) -
exp(2.0 * rev(k) * (time2(k) - cappedTime(k + 1, t)))) /
rev(k);
// add to sum
res += res2;
}
// l=k
Real res2 = 1.0;
// alpha_k zeta_k
res2 *=
revZero(k)
? vol(k) * vol(k) / 4.0 *
(4.0 * pow(cappedTime(k + 1, t) - time2(k), 2.0) -
(pow(flooredTime(k, w) - 2.0 * time2(k) +
cappedTime(k + 1, t),
2.0) +
pow(cappedTime(k + 1, t) - flooredTime(k, w), 2.0)))
: vol(k) * vol(k) / (2.0 * rev(k) * rev(k)) *
(exp(-2.0 * rev(k) * (cappedTime(k + 1, t) - time2(k))) +
1.0 -
(exp(-rev(k) * (flooredTime(k, w) - 2.0 * time2(k) +
cappedTime(k + 1, t))) +
exp(-rev(k) *
(cappedTime(k + 1, t) - flooredTime(k, w)))));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res2 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// no beta_j in this case ...
res += res2;
}
cache2a_.insert(std::make_pair(key, res));
return res;
} // expectation_rn_part
Real GsrProcessCore::expectation_tf_part(const Time w,
const Time dt) const {
Real t = w + dt;
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k =
cache2b_.find(key);
if (k != cache2b_.end())
return k->second;
Real res = 0.0;
// int -A(s,t) \sigma^2 G(s,T)
for (int k = lowerIndex(w); k <= upperIndex(t) - 1; k++) {
Real res2 = 0.0;
// l>k
for (int l = k + 1; l <= upperIndex(T_) - 1; l++) {
Real res3 = 1.0;
// eta_l
res3 *= revZero(l)
? cappedTime(l + 1, T_) - time2(l)
: (1.0 -
exp(-rev(l) * (cappedTime(l + 1, T_) - time2(l)))) /
rev(l);
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res3 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// gamma_j (j>k)
for (int j = k + 1; j <= l - 1; j++)
res3 *= exp(-rev(j) * (time2(j + 1) - time2(j)));
// zeta_k gamma_k
res3 *=
revZero(k)
? (cappedTime(k + 1, t) - time2(k + 1) -
(2.0 * flooredTime(k, w) - cappedTime(k + 1, t) -
time2(k + 1))) /
2.0
: (exp(rev(k) * (cappedTime(k + 1, t) - time2(k + 1))) -
exp(rev(k) * (2.0 * flooredTime(k, w) -
cappedTime(k + 1, t) - time2(k + 1)))) /
(2.0 * rev(k));
// add to sum
res2 += res3;
}
// l=k
Real res3 = 1.0;
// eta_k zeta_k
res3 *=
revZero(k)
? (-pow(cappedTime(k + 1, t) - cappedTime(k + 1, T_), 2.0) -
2.0 * pow(cappedTime(k + 1, t) - flooredTime(k, w), 2.0) +
pow(2.0 * flooredTime(k, w) - cappedTime(k + 1, T_) -
cappedTime(k + 1, t),
2.0)) /
4.0
: (2.0 - exp(rev(k) *
(cappedTime(k + 1, t) - cappedTime(k + 1, T_))) -
(2.0 * exp(-rev(k) *
(cappedTime(k + 1, t) - flooredTime(k, w))) -
exp(rev(k) *
(2.0 * flooredTime(k, w) - cappedTime(k + 1, T_) -
cappedTime(k + 1, t))))) /
(2.0 * rev(k) * rev(k));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res3 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// no gamma_j in this case ...
res2 += res3;
// add to main accumulator
res += -vol(k) * vol(k) * res2;
}
cache2b_.insert(std::make_pair(key, res));
return res;
} // expectation_tf_part
Real GsrProcessCore::variance(const Time w, const Time dt) const {
Real t = w + dt;
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k = cache3_.find(key);
if (k != cache3_.end())
return k->second;
Real res = 0.0;
for (int k = lowerIndex(w); k <= upperIndex(t) - 1; k++) {
Real res2 = vol(k) * vol(k);
// zeta_k^2
res2 *= revZero(k)
? -(flooredTime(k, w) - cappedTime(k + 1, t))
: (1.0 - exp(2.0 * rev(k) *
(flooredTime(k, w) - cappedTime(k + 1, t)))) /
(2.0 * rev(k));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++) {
res2 *= exp(-2.0 * rev(i) * (cappedTime(i + 1, t) - time2(i)));
}
res += res2;
}
cache3_.insert(std::make_pair(key, res));
return res;
}
Real GsrProcessCore::y(const Time t) const {
Real key;
key = t;
std::map<Real, Real>::const_iterator k = cache4_.find(key);
if (k != cache4_.end())
return k->second;
Real res = 0.0;
for (int i = 0; i <= upperIndex(t) - 1; i++) {
Real res2 = 1.0;
for (int j = i + 1; j <= upperIndex(t) - 1; j++) {
res2 *= exp(-2.0 * rev(j) * (cappedTime(j + 1, t) - time2(j)));
}
res2 *= revZero(i) ? vol(i) * vol(i) * (cappedTime(i + 1, t) - time2(i))
: (vol(i) * vol(i) / (2.0 * rev(i)) *
(1.0 - exp(-2.0 * rev(i) *
(cappedTime(i + 1, t) - time2(i)))));
res += res2;
}
cache4_.insert(std::make_pair(key, res));
return res;
}
Real GsrProcessCore::G(const Time t, const Time w) const {
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k = cache5_.find(key);
if (k != cache5_.end())
return k->second;
Real res = 0.0;
for (int i = lowerIndex(t); i <= upperIndex(w) - 1; i++) {
Real res2 = 1.0;
for (int j = lowerIndex(t); j <= i - 1; j++) {
res2 *= exp(-rev(j) * (time2(j + 1) - flooredTime(j, t)));
}
res2 *= revZero(i) ? cappedTime(i + 1, w) - flooredTime(i, t)
: (1.0 - exp(-rev(i) * (cappedTime(i + 1, w) -
flooredTime(i, t)))) /
rev(i);
res += res2;
}
cache5_.insert(std::make_pair(key, res));
return res;
}
int GsrProcessCore::lowerIndex(const Time t) const {
return static_cast<int>(std::upper_bound(times_.begin(), times_.end(), t) -
times_.begin());
}
int GsrProcessCore::upperIndex(const Time t) const {
if (t < QL_MIN_POSITIVE_REAL)
return 0;
return static_cast<int>(
std::upper_bound(times_.begin(), times_.end(), t - QL_EPSILON) -
times_.begin()) +
1;
}
Real GsrProcessCore::cappedTime(const Size index, const Real cap) const {
return cap != Null<Real>() ? std::min(cap, time2(index)) : time2(index);
}
Real GsrProcessCore::flooredTime(const Size index,
const Real floor) const {
return floor != Null<Real>() ? std::max(floor, time2(index)) : time2(index);
}
Real GsrProcessCore::time2(const Size index) const {
if (index == 0)
return 0.0;
if (index > times_.size())
return T_; // FIXME how to ensure that forward
// measure time is geq all times
// given
return times_[index - 1];
}
Real GsrProcessCore::vol(const Size index) const {
if (index >= vols_.size())
return vols_.back();
return vols_[index];
}
Real GsrProcessCore::rev(const Size index) const {
if (index >= reversions_.size())
return reversions_.back();
return reversions_[index];
}
bool GsrProcessCore::revZero(const Size index) const {
if (index >= revZero_.size())
return revZero_.back();
return revZero_[index];
}
} // namespace detail
} // namesapce QuantLib
|