1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005, 2007, 2009, 2014 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/functional.hpp>
#include <ql/math/modifiedbessel.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/integrals/segmentintegral.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/processes/hestonprocess.hpp>
#include <ql/processes/eulerdiscretization.hpp>
#include <ql/functional.hpp>
#include <boost/math/distributions/non_central_chi_squared.hpp>
#include <complex>
namespace QuantLib {
HestonProcess::HestonProcess(
const Handle<YieldTermStructure>& riskFreeRate,
const Handle<YieldTermStructure>& dividendYield,
const Handle<Quote>& s0,
Real v0, Real kappa,
Real theta, Real sigma, Real rho,
Discretization d)
: StochasticProcess(ext::shared_ptr<discretization>(
new EulerDiscretization)),
riskFreeRate_(riskFreeRate), dividendYield_(dividendYield), s0_(s0),
v0_(v0), kappa_(kappa), theta_(theta), sigma_(sigma), rho_(rho),
discretization_(d) {
registerWith(riskFreeRate_);
registerWith(dividendYield_);
registerWith(s0_);
}
Size HestonProcess::size() const {
return 2;
}
Size HestonProcess::factors() const {
return ( discretization_ == BroadieKayaExactSchemeLobatto
|| discretization_ == BroadieKayaExactSchemeTrapezoidal
|| discretization_ == BroadieKayaExactSchemeLaguerre) ? 3 : 2;
}
Disposable<Array> HestonProcess::initialValues() const {
Array tmp(2);
tmp[0] = s0_->value();
tmp[1] = v0_;
return tmp;
}
Disposable<Array> HestonProcess::drift(Time t, const Array& x) const {
Array tmp(2);
const Real vol = (x[1] > 0.0) ? std::sqrt(x[1])
: (discretization_ == Reflection) ? - std::sqrt(-x[1])
: 0.0;
tmp[0] = riskFreeRate_->forwardRate(t, t, Continuous)
- dividendYield_->forwardRate(t, t, Continuous)
- 0.5 * vol * vol;
tmp[1] = kappa_*
(theta_-((discretization_==PartialTruncation) ? x[1] : vol*vol));
return tmp;
}
Disposable<Matrix> HestonProcess::diffusion(Time, const Array& x) const {
/* the correlation matrix is
| 1 rho |
| rho 1 |
whose square root (which is used here) is
| 1 0 |
| rho sqrt(1-rho^2) |
*/
Matrix tmp(2,2);
const Real vol = (x[1] > 0.0) ? std::sqrt(x[1])
: (discretization_ == Reflection) ? -std::sqrt(-x[1])
: 1e-8; // set vol to (almost) zero but still
// expose some correlation information
const Real sigma2 = sigma_ * vol;
const Real sqrhov = std::sqrt(1.0 - rho_*rho_);
tmp[0][0] = vol; tmp[0][1] = 0.0;
tmp[1][0] = rho_*sigma2; tmp[1][1] = sqrhov*sigma2;
return tmp;
}
Disposable<Array> HestonProcess::apply(const Array& x0,
const Array& dx) const {
Array tmp(2);
tmp[0] = x0[0] * std::exp(dx[0]);
tmp[1] = x0[1] + dx[1];
return tmp;
}
namespace {
// This is the continuous version of a characteristic function
// for the exact sampling of the Heston process, s. page 8, formula 13,
// M. Broadie, O. Kaya, Exact Simulation of Stochastic Volatility and
// other Affine Jump Diffusion Processes
// http://finmath.stanford.edu/seminars/documents/Broadie.pdf
//
// This version does not need a branch correction procedure.
// For details please see:
// Roger Lord, "Efficient Pricing Algorithms for exotic Derivatives",
// http://repub.eur.nl/pub/13917/LordR-Thesis.pdf
std::complex<Real> Phi(const HestonProcess& process,
const std::complex<Real>& a,
Real nu_0, Real nu_t, Time dt) {
const Real theta = process.theta();
const Real kappa = process.kappa();
const Real sigma = process.sigma();
const Volatility sigma2 = sigma*sigma;
const std::complex<Real> ga = std::sqrt(
kappa*kappa - 2*sigma2*a*std::complex<Real>(0.0, 1.0));
const Real d = 4*theta*kappa/sigma2;
const Real nu = 0.5*d-1;
const std::complex<Real> z
= ga*std::exp(-0.5*ga*dt)/(1.0-std::exp(-ga*dt));
const std::complex<Real> log_z
= -0.5*ga*dt + std::log(ga/(1.0-std::exp(-ga*dt)));
const std::complex<Real> alpha
= 4.0*ga*std::exp(-0.5*ga*dt)/(sigma2*(1.0-std::exp(-ga*dt)));
const std::complex<Real> beta = 4.0*kappa*std::exp(-0.5*kappa*dt)
/(sigma2*(1.0-std::exp(-kappa*dt)));
return ga*std::exp(-0.5*(ga-kappa)*dt)*(1-std::exp(-kappa*dt))
/ (kappa*(1.0-std::exp(-ga*dt)))
*std::exp((nu_0+nu_t)/sigma2 * (
kappa*(1.0+std::exp(-kappa*dt))/(1.0-std::exp(-kappa*dt))
- ga*(1.0+std::exp(-ga*dt))/(1.0-std::exp(-ga*dt))))
*std::exp(nu*log_z)/std::pow(z, nu)
*((nu_t > 1e-8)
? modifiedBesselFunction_i(
nu, std::sqrt(nu_0*nu_t)*alpha)
/ modifiedBesselFunction_i(
nu, std::sqrt(nu_0*nu_t)*beta)
: std::pow(alpha/beta, nu)
);
}
Real ch(const HestonProcess& process,
Real x, Real u, Real nu_0, Real nu_t, Time dt) {
return M_2_PI*std::sin(u*x)/u
* Phi(process, u, nu_0, nu_t, dt).real();
}
Real ph(const HestonProcess& process,
Real x, Real u, Real nu_0, Real nu_t, Time dt) {
return M_2_PI*std::cos(u*x)*Phi(process, u, nu_0, nu_t, dt).real();
}
Real int_ph(const HestonProcess& process,
Real a, Real x, Real y, Real nu_0, Real nu_t, Time t) {
using namespace ext::placeholders;
static const GaussLaguerreIntegration gaussLaguerreIntegration(128);
const Real rho = process.rho();
const Real kappa = process.kappa();
const Real sigma = process.sigma();
const Real x0 = std::log(process.s0()->value());
return gaussLaguerreIntegration(
ext::bind(&ph, process, y,
_1, nu_0, nu_t, t))
/ std::sqrt(2*M_PI*(1-rho*rho)*y)
* std::exp(-0.5*square<Real>()( x - x0 - a
+ y*(0.5-rho*kappa/sigma))
/(y*(1-rho*rho)));
}
Real pade(Real x, const Real* nominator, const Real* denominator, Size m) {
Real n=0.0, d=0.0;
for (Integer i=m-1; i >= 0; --i) {
n = (n+nominator[i])*x;
d = (d+denominator[i])*x;
}
return (1+n)/(1+d);
}
// For the definition of the Pade approximation please see e.g.
// http://wikipedia.org/wiki/Sine_integral#Sine_integral
Real Si(Real x) {
if (x <=4.0) {
const Real n[] =
{ -4.54393409816329991e-2,1.15457225751016682e-3,
-1.41018536821330254e-5,9.43280809438713025e-8,
-3.53201978997168357e-10,7.08240282274875911e-13,
-6.05338212010422477e-16 };
const Real d[] =
{ 1.01162145739225565e-2,4.99175116169755106e-5,
1.55654986308745614e-7,3.28067571055789734e-10,
4.5049097575386581e-13,3.21107051193712168e-16,
0.0 };
return x*pade(x*x, n, d, sizeof(n)/sizeof(Real));
}
else {
const Real y = 1/(x*x);
const Real fn[] =
{ 7.44437068161936700618e2,1.96396372895146869801e5,
2.37750310125431834034e7,1.43073403821274636888e9,
4.33736238870432522765e10,6.40533830574022022911e11,
4.20968180571076940208e12,1.00795182980368574617e13,
4.94816688199951963482e12,-4.94701168645415959931e11 };
const Real fd[] =
{ 7.46437068161927678031e2,1.97865247031583951450e5,
2.41535670165126845144e7,1.47478952192985464958e9,
4.58595115847765779830e10,7.08501308149515401563e11,
5.06084464593475076774e12,1.43468549171581016479e13,
1.11535493509914254097e13, 0.0 };
const Real f = pade(y, fn, fd, 10)/x;
const Real gn[] =
{ 8.1359520115168615e2,2.35239181626478200e5,
3.12557570795778731e7,2.06297595146763354e9,
6.83052205423625007e10,1.09049528450362786e12,
7.57664583257834349e12,1.81004487464664575e13,
6.43291613143049485e12,-1.36517137670871689e12 };
const Real gd[] =
{ 8.19595201151451564e2,2.40036752835578777e5,
3.26026661647090822e7,2.23355543278099360e9,
7.87465017341829930e10,1.39866710696414565e12,
1.17164723371736605e13,4.01839087307656620e13,
3.99653257887490811e13, 0.0};
const Real g = y*pade(y, gn, gd, 10);
return M_PI_2 - f*std::cos(x)-g*std::sin(x);
}
}
Real cornishFisherEps(const HestonProcess& process,
Real nu_0, Real nu_t, Time dt, Real eps) {
// use moment generating function to get the
// first,second, third and fourth moment of the distribution
const Real d = 1e-2;
const Real p2 = Phi(process, std::complex<Real>(0, -2*d),
nu_0, nu_t, dt).real();
const Real p1 = Phi(process, std::complex<Real>(0, -d),
nu_0, nu_t, dt).real();
const Real p0 = Phi(process, std::complex<Real>(0, 0),
nu_0, nu_t, dt).real();
const Real pm1= Phi(process, std::complex<Real>(0, d),
nu_0, nu_t, dt).real();
const Real pm2= Phi(process, std::complex<Real>(0, 2*d),
nu_0, nu_t, dt).real();
const Real avg = (pm2-8*pm1+8*p1-p2)/(12*d);
const Real m2 = (-pm2+16*pm1-30*p0+16*p1-p2)/(12*d*d);
const Real var = m2 - avg*avg;
const Real stdDev = std::sqrt(var);
const Real m3 = (-0.5*pm2 + pm1 - p1 + 0.5*p2)/(d*d*d);
const Real skew
= (m3 - 3*var*avg - avg*avg*avg) / (var*stdDev);
const Real m4 = (pm2 - 4*pm1 + 6*p0 - 4*p1 + p2)/(d*d*d*d);
const Real kurt
= (m4 - 4*m3*avg + 6*m2*avg*avg - 3*avg*avg*avg*avg)
/(var*var);
// Cornish-Fisher relation to come up with an improved
// estimate of 1-F(u_\eps) < \eps
const Real q = InverseCumulativeNormal()(1-eps);
const Real w = q + (q*q-1)/6*skew + (q*q*q-3*q)/24*(kurt-3)
- (2*q*q*q-5*q)/36*skew*skew;
return avg + w*stdDev;
}
Real cdf_nu_ds(const HestonProcess& process,
Real x, Real nu_0, Real nu_t, Time dt,
HestonProcess::Discretization discretization) {
using namespace ext::placeholders;
const Real eps = 1e-4;
const Real u_eps = std::min(100.0,
std::max(0.1, cornishFisherEps(process, nu_0, nu_t, dt, eps)));
switch (discretization) {
case HestonProcess::BroadieKayaExactSchemeLaguerre:
{
static const GaussLaguerreIntegration
gaussLaguerreIntegration(128);
// get the upper bound for the integration
Real upper = u_eps/2.0;
while (std::abs(Phi(process,upper,nu_0,nu_t,dt)/upper)
> eps) upper*=2.0;
return (x < upper)
? std::max(0.0, std::min(1.0,
gaussLaguerreIntegration(
ext::bind(&ch, process, x,
_1, nu_0, nu_t, dt))))
: 1.0;
}
case HestonProcess::BroadieKayaExactSchemeLobatto:
{
// get the upper bound for the integration
Real upper = u_eps/2.0;
while (std::abs(Phi(process, upper,nu_0,nu_t,dt)/upper)
> eps) upper*=2.0;
return (x < upper)
? std::max(0.0, std::min(1.0,
GaussLobattoIntegral(Null<Size>(), eps)(
ext::bind(&ch, process, x,
_1, nu_0, nu_t, dt),
QL_EPSILON, upper)))
: 1.0;
}
case HestonProcess::BroadieKayaExactSchemeTrapezoidal:
{
const Real h = 0.05;
Real si = Si(0.5*h*x);
Real s = M_2_PI*si;
std::complex<Real> f;
Size j = 0;
do {
++j;
const Real u = h*j;
const Real si_n = Si(x*(u+0.5*h));
f = Phi(process, u, nu_0, nu_t, dt);
s+= M_2_PI*f.real()*(si_n-si);
si = si_n;
}
while (M_2_PI*std::abs(f)/j > eps);
return s;
}
default:
QL_FAIL("unknown integration method");
}
}
}
Real cdf_nu_ds_minus_x(const HestonProcess &process, Real x, Real nu_0,
Real nu_t, Time dt,
HestonProcess::Discretization discretization,
Real x0) {
return cdf_nu_ds(process, x, nu_0, nu_t, dt, discretization) - x0;
}
Real HestonProcess::pdf(Real x, Real v, Time t, Real eps) const {
using namespace ext::placeholders;
const Real k = sigma_*sigma_*(1-std::exp(-kappa_*t))/(4*kappa_);
const Real a = std::log( dividendYield_->discount(t)
/ riskFreeRate_->discount(t))
+ rho_/sigma_*(v - v0_ - kappa_*theta_*t);
const Real x0 = std::log(s0()->value());
Real upper = std::max(0.1, -(x-x0-a)/(0.5-rho_*kappa_/sigma_)), f=0, df=1;
while (df > 0.0 || f > 0.1*eps) {
const Real f1 = x-x0-a+upper*(0.5-rho_*kappa_/sigma_);
const Real f2 = -0.5*f1*f1/(upper*(1-rho_*rho_));
df = 1/std::sqrt(2*M_PI*(1-rho_*rho_))
* ( -0.5/(upper*std::sqrt(upper))*std::exp(f2)
+ 1/std::sqrt(upper)*std::exp(f2)*(-0.5/(1-rho_*rho_))
*(-1/(upper*upper)*f1*f1
+ 2/upper*f1*(0.5-rho_*kappa_/sigma_)));
f = std::exp(f2)/ std::sqrt(2*M_PI*(1-rho_*rho_)*upper);
upper*=1.5;
}
upper = 2.0*cornishFisherEps(*this, v0_, v, t,1e-3);
return SegmentIntegral(100)(
ext::bind(&int_ph, *this, a, x,
_1, v0_, v, t),
QL_EPSILON, upper)
* boost::math::pdf(
boost::math::non_central_chi_squared_distribution<Real>(
4*theta_*kappa_/(sigma_*sigma_),
4*kappa_*std::exp(-kappa_*t)
/((sigma_*sigma_)*(1-std::exp(-kappa_*t)))*v0_),
v/k) / k;
}
Disposable<Array> HestonProcess::evolve(Time t0, const Array& x0,
Time dt, const Array& dw) const {
using namespace ext::placeholders;
Array retVal(2);
Real vol, vol2, mu, nu, dy;
const Real sdt = std::sqrt(dt);
const Real sqrhov = std::sqrt(1.0 - rho_*rho_);
switch (discretization_) {
// For the definition of PartialTruncation, FullTruncation
// and Reflection see Lord, R., R. Koekkoek and D. van Dijk (2006),
// "A Comparison of biased simulation schemes for
// stochastic volatility models",
// Working Paper, Tinbergen Institute
case PartialTruncation:
vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
vol2 = sigma_ * vol;
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous)
- 0.5 * vol * vol;
nu = kappa_*(theta_ - x0[1]);
retVal[0] = x0[0] * std::exp(mu*dt+vol*dw[0]*sdt);
retVal[1] = x0[1] + nu*dt + vol2*sdt*(rho_*dw[0] + sqrhov*dw[1]);
break;
case FullTruncation:
vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
vol2 = sigma_ * vol;
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous)
- 0.5 * vol * vol;
nu = kappa_*(theta_ - vol*vol);
retVal[0] = x0[0] * std::exp(mu*dt+vol*dw[0]*sdt);
retVal[1] = x0[1] + nu*dt + vol2*sdt*(rho_*dw[0] + sqrhov*dw[1]);
break;
case Reflection:
vol = std::sqrt(std::fabs(x0[1]));
vol2 = sigma_ * vol;
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous)
- 0.5 * vol*vol;
nu = kappa_*(theta_ - vol*vol);
retVal[0] = x0[0]*std::exp(mu*dt+vol*dw[0]*sdt);
retVal[1] = vol*vol
+nu*dt + vol2*sdt*(rho_*dw[0] + sqrhov*dw[1]);
break;
case NonCentralChiSquareVariance:
// use Alan Lewis trick to decorrelate the equity and the variance
// process by using y(t)=x(t)-\frac{rho}{sigma}\nu(t)
// and Ito's Lemma. Then use exact sampling for the variance
// process. For further details please read the Wilmott thread
// "QuantLib code is very high quality"
vol = (x0[1] > 0.0) ? std::sqrt(x0[1]) : 0.0;
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous)
- 0.5 * vol*vol;
retVal[1] = varianceDistribution(x0[1], dw[1], dt);
dy = (mu - rho_/sigma_*kappa_
*(theta_-vol*vol)) * dt + vol*sqrhov*dw[0]*sdt;
retVal[0] = x0[0]*std::exp(dy + rho_/sigma_*(retVal[1]-x0[1]));
break;
case QuadraticExponential:
case QuadraticExponentialMartingale:
{
// for details of the quadratic exponential discretization scheme
// see Leif Andersen,
// Efficient Simulation of the Heston Stochastic Volatility Model
const Real ex = std::exp(-kappa_*dt);
const Real m = theta_+(x0[1]-theta_)*ex;
const Real s2 = x0[1]*sigma_*sigma_*ex/kappa_*(1-ex)
+ theta_*sigma_*sigma_/(2*kappa_)*(1-ex)*(1-ex);
const Real psi = s2/(m*m);
const Real g1 = 0.5;
const Real g2 = 0.5;
Real k0 = -rho_*kappa_*theta_*dt/sigma_;
const Real k1 = g1*dt*(kappa_*rho_/sigma_-0.5)-rho_/sigma_;
const Real k2 = g2*dt*(kappa_*rho_/sigma_-0.5)+rho_/sigma_;
const Real k3 = g1*dt*(1-rho_*rho_);
const Real k4 = g2*dt*(1-rho_*rho_);
const Real A = k2+0.5*k4;
if (psi < 1.5) {
const Real b2 = 2/psi-1+std::sqrt(2/psi*(2/psi-1));
const Real b = std::sqrt(b2);
const Real a = m/(1+b2);
if (discretization_ == QuadraticExponentialMartingale) {
// martingale correction
QL_REQUIRE(A < 1/(2*a), "illegal value");
k0 = -A*b2*a/(1-2*A*a)+0.5*std::log(1-2*A*a)
-(k1+0.5*k3)*x0[1];
}
retVal[1] = a*(b+dw[1])*(b+dw[1]);
}
else {
const Real p = (psi-1)/(psi+1);
const Real beta = (1-p)/m;
const Real u = CumulativeNormalDistribution()(dw[1]);
if (discretization_ == QuadraticExponentialMartingale) {
// martingale correction
QL_REQUIRE(A < beta, "illegal value");
k0 = -std::log(p+beta*(1-p)/(beta-A))-(k1+0.5*k3)*x0[1];
}
retVal[1] = ((u <= p) ? 0.0 : std::log((1-p)/(1-u))/beta);
}
mu = riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
- dividendYield_->forwardRate(t0, t0+dt, Continuous);
retVal[0] = x0[0]*std::exp(mu*dt + k0 + k1*x0[1] + k2*retVal[1]
+std::sqrt(k3*x0[1]+k4*retVal[1])*dw[0]);
}
break;
case BroadieKayaExactSchemeLobatto:
case BroadieKayaExactSchemeLaguerre:
case BroadieKayaExactSchemeTrapezoidal:
{
const Real nu_0 = x0[1];
const Real nu_t = varianceDistribution(nu_0, dw[1], dt);
const Real x = std::min(1.0-QL_EPSILON,
std::max(0.0, CumulativeNormalDistribution()(dw[2])));
const Real vds = Brent().solve(
ext::bind(&cdf_nu_ds_minus_x, *this, _1,
nu_0, nu_t, dt, discretization_, x),
1e-5, theta_*dt, 0.1*theta_*dt);
const Real vdw
= (nu_t - nu_0 - kappa_*theta_*dt + kappa_*vds)/sigma_;
mu = ( riskFreeRate_->forwardRate(t0, t0+dt, Continuous)
-dividendYield_->forwardRate(t0, t0+dt, Continuous))*dt
- 0.5*vds + rho_*vdw;
const Volatility sig = std::sqrt((1-rho_*rho_)*vds);
const Real s = x0[0]*std::exp(mu + sig*dw[0]);
retVal[0] = s;
retVal[1] = nu_t;
}
break;
default:
QL_FAIL("unknown discretization schema");
}
return retVal;
}
const Handle<Quote>& HestonProcess::s0() const {
return s0_;
}
const Handle<YieldTermStructure>& HestonProcess::dividendYield() const {
return dividendYield_;
}
const Handle<YieldTermStructure>& HestonProcess::riskFreeRate() const {
return riskFreeRate_;
}
Time HestonProcess::time(const Date& d) const {
return riskFreeRate_->dayCounter().yearFraction(
riskFreeRate_->referenceDate(), d);
}
Real HestonProcess::varianceDistribution(Real v, Real dw, Time dt) const {
const Real df = 4*theta_*kappa_/(sigma_*sigma_);
const Real ncp = 4*kappa_*std::exp(-kappa_*dt)
/(sigma_*sigma_*(1-std::exp(-kappa_*dt)))*v;
const Real p = std::min(1.0-QL_EPSILON,
std::max(0.0, CumulativeNormalDistribution()(dw)));
return sigma_*sigma_*(1-std::exp(-kappa_*dt))/(4*kappa_)
*InverseNonCentralCumulativeChiSquareDistribution(df, ncp, 100)(p);
}
}
|