1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file clone.hpp
\brief cloning proxy to an underlying object
*/
#ifndef quantlib_clone_hpp
#define quantlib_clone_hpp
#include <ql/errors.hpp>
#if !defined(QL_USE_STD_UNIQUE_PTR)
#include <boost/scoped_ptr.hpp>
#endif
#include <algorithm>
#include <memory>
namespace QuantLib {
//! cloning proxy to an underlying object
/*! When copied, this class will make a clone of its underlying
object, which must provide a <tt>clone()</tt> method returning
a std::auto_ptr (or a std::unique_ptr, depending on your
configuration) to a newly-allocated instance.
*/
template <class T>
class Clone {
public:
Clone();
#if defined(QL_USE_STD_UNIQUE_PTR)
Clone(std::unique_ptr<T>&&);
#else
Clone(std::auto_ptr<T>);
#endif
Clone(const T&);
Clone(const Clone<T>&);
Clone<T>& operator=(const T&);
Clone<T>& operator=(const Clone<T>&);
T& operator*() const;
T* operator->() const;
bool empty() const;
void swap(Clone<T>& t);
private:
#if defined(QL_USE_STD_UNIQUE_PTR)
std::unique_ptr<T> ptr_;
#else
boost::scoped_ptr<T> ptr_;
#endif
};
/*! \relates Clone */
template <class T>
void swap(Clone<T>&, Clone<T>&);
// inline definitions
template <class T>
inline Clone<T>::Clone() {}
#if defined(QL_USE_STD_UNIQUE_PTR)
template <class T>
inline Clone<T>::Clone(std::unique_ptr<T>&& p)
: ptr_(std::move(p)) {}
#else
template <class T>
inline Clone<T>::Clone(std::auto_ptr<T> p)
: ptr_(p) {}
#endif
template <class T>
inline Clone<T>::Clone(const T& t)
: ptr_(t.clone().release()) {}
template <class T>
inline Clone<T>::Clone(const Clone<T>& t)
: ptr_(t.empty() ? (T*)(0) : t->clone().release()) {}
template <class T>
inline Clone<T>& Clone<T>::operator=(const T& t) {
ptr_.reset(t.clone().release());
return *this;
}
template <class T>
inline Clone<T>& Clone<T>::operator=(const Clone<T>& t) {
ptr_.reset(t.empty() ? (T*)(0) : t->clone().release());
return *this;
}
template <class T>
inline T& Clone<T>::operator*() const {
QL_REQUIRE(!this->empty(), "no underlying objects");
return *(this->ptr_);
}
template <class T>
inline T* Clone<T>::operator->() const {
return this->ptr_.get();
}
template <class T>
inline bool Clone<T>::empty() const {
return !ptr_;
}
template <class T>
inline void Clone<T>::swap(Clone<T>& t) {
this->ptr_.swap(t.ptr_);
}
template <class T>
inline void swap(Clone<T>& t, Clone<T>& u) {
t.swap(u);
}
}
#endif
|