1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006, 2007, 2015 Ferdinando Ametrano
Copyright (C) 2006 Cristina Duminuco
Copyright (C) 2007 Giorgio Facchinetti
Copyright (C) 2015 Paolo Mazzocchi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_abcd_math_function_hpp
#define quantlib_abcd_math_function_hpp
#include <ql/types.hpp>
#include <ql/errors.hpp>
#include <vector>
namespace QuantLib {
//! %Abcd functional form
/*! \f[ f(t) = [ a + b*t ] e^{-c*t} + d \f]
following Rebonato's notation. */
class AbcdMathFunction {
public:
/*! \deprecated Use `auto` or `decltype` instead.
Deprecated in version 1.29.
*/
QL_DEPRECATED
typedef Time argument_type;
/*! \deprecated Use `auto` or `decltype` instead.
Deprecated in version 1.29.
*/
QL_DEPRECATED
typedef Real result_type;
AbcdMathFunction(Real a = 0.002,
Real b = 0.001,
Real c = 0.16,
Real d = 0.0005);
AbcdMathFunction(std::vector<Real> abcd);
//! function value at time t: \f[ f(t) \f]
Real operator()(Time t) const;
//! time at which the function reaches maximum (if any)
Time maximumLocation() const;
//! maximum value of the function
Real maximumValue() const;
//! function value at time +inf: \f[ f(\inf) \f]
Real longTermValue() const { return d_; }
/*! first derivative of the function at time t
\f[ f'(t) = [ (b-c*a) + (-c*b)*t) ] e^{-c*t} \f] */
Real derivative(Time t) const;
/*! indefinite integral of the function at time t
\f[ \int f(t)dt = [ (-a/c-b/c^2) + (-b/c)*t ] e^{-c*t} + d*t \f] */
Real primitive(Time t) const;
/*! definite integral of the function between t1 and t2
\f[ \int_{t1}^{t2} f(t)dt \f] */
Real definiteIntegral(Time t1, Time t2) const;
/*! Inspectors */
Real a() const { return a_; }
Real b() const { return b_; }
Real c() const { return c_; }
Real d() const { return d_; }
const std::vector<Real>& coefficients() { return abcd_; }
const std::vector<Real>& derivativeCoefficients() { return dabcd_; }
// the primitive is not abcd
/*! coefficients of a AbcdMathFunction defined as definite
integral on a rolling window of length tau, with tau = t2-t */
std::vector<Real> definiteIntegralCoefficients(Time t,
Time t2) const;
/*! coefficients of a AbcdMathFunction defined as definite
derivative on a rolling window of length tau, with tau = t2-t */
std::vector<Real> definiteDerivativeCoefficients(Time t,
Time t2) const;
static void validate(Real a,
Real b,
Real c,
Real d);
protected:
Real a_, b_, c_, d_;
private:
void initialize_();
std::vector<Real> abcd_;
std::vector<Real> dabcd_;
Real da_, db_;
Real pa_, pb_, K_;
Real dibc_, diacplusbcc_;
};
// inline AbcdMathFunction
inline Real AbcdMathFunction::operator()(Time t) const {
//return (a_ + b_*t)*std::exp(-c_*t) + d_;
return t<0 ? 0.0 : Real((a_ + b_*t)*std::exp(-c_*t) + d_);
}
inline Real AbcdMathFunction::derivative(Time t) const {
//return (da_ + db_*t)*std::exp(-c_*t);
return t<0 ? 0.0 : Real((da_ + db_*t)*std::exp(-c_*t));
}
inline Real AbcdMathFunction::primitive(Time t) const {
//return (pa_ + pb_*t)*std::exp(-c_*t) + d_*t + K_;
return t<0 ? 0.0 : Real((pa_ + pb_*t)*std::exp(-c_*t) + d_*t + K_);
}
inline Real AbcdMathFunction::maximumValue() const {
if (b_==0.0 || a_<=0.0)
return d_;
return (*this)(maximumLocation());
}
}
#endif
|