File: normaldistribution.cpp

package info (click to toggle)
quantlib 1.29-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,032 kB
  • sloc: cpp: 389,443; makefile: 6,658; sh: 4,511; lisp: 86
file content (188 lines) | stat: -rw-r--r-- 7,951 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
 Copyright (C) 2002, 2003 Ferdinando Ametrano
 Copyright (C) 2008 StatPro Italia srl
 Copyright (C) 2010 Kakhkhor Abdijalilov

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/comparison.hpp>

#include <boost/math/distributions/normal.hpp>

namespace QuantLib {

    Real CumulativeNormalDistribution::operator()(Real z) const {
        //QL_REQUIRE(!(z >= average_ && 2.0*average_-z > average_),
        //           "not a real number. ");
        z = (z - average_) / sigma_;

        Real result = 0.5 * ( 1.0 + errorFunction_( z*M_SQRT_2 ) );
        if (result<=1e-8) { //todo: investigate the threshold level
            // Asymptotic expansion for very negative z following (26.2.12)
            // on page 408 in M. Abramowitz and A. Stegun,
            // Pocketbook of Mathematical Functions, ISBN 3-87144818-4.
            Real sum=1.0, zsqr=z*z, i=1.0, g=1.0, x, y,
                 a=QL_MAX_REAL, lasta;
            do {
                lasta=a;
                x = (4.0*i-3.0)/zsqr;
                y = x*((4.0*i-1)/zsqr);
                a = g*(x-y);
                sum -= a;
                g *= y;
                ++i;
                a = std::fabs(a);
            } while (lasta>a && a>=std::fabs(sum*QL_EPSILON));
            result = -gaussian_(z)/z*sum;
        }
        return result;
    }

    #if !defined(QL_PATCH_SOLARIS)
    const CumulativeNormalDistribution InverseCumulativeNormal::f_;
    #endif

    // Coefficients for the rational approximation.
    const Real InverseCumulativeNormal::a1_ = -3.969683028665376e+01;
    const Real InverseCumulativeNormal::a2_ =  2.209460984245205e+02;
    const Real InverseCumulativeNormal::a3_ = -2.759285104469687e+02;
    const Real InverseCumulativeNormal::a4_ =  1.383577518672690e+02;
    const Real InverseCumulativeNormal::a5_ = -3.066479806614716e+01;
    const Real InverseCumulativeNormal::a6_ =  2.506628277459239e+00;

    const Real InverseCumulativeNormal::b1_ = -5.447609879822406e+01;
    const Real InverseCumulativeNormal::b2_ =  1.615858368580409e+02;
    const Real InverseCumulativeNormal::b3_ = -1.556989798598866e+02;
    const Real InverseCumulativeNormal::b4_ =  6.680131188771972e+01;
    const Real InverseCumulativeNormal::b5_ = -1.328068155288572e+01;

    const Real InverseCumulativeNormal::c1_ = -7.784894002430293e-03;
    const Real InverseCumulativeNormal::c2_ = -3.223964580411365e-01;
    const Real InverseCumulativeNormal::c3_ = -2.400758277161838e+00;
    const Real InverseCumulativeNormal::c4_ = -2.549732539343734e+00;
    const Real InverseCumulativeNormal::c5_ =  4.374664141464968e+00;
    const Real InverseCumulativeNormal::c6_ =  2.938163982698783e+00;

    const Real InverseCumulativeNormal::d1_ =  7.784695709041462e-03;
    const Real InverseCumulativeNormal::d2_ =  3.224671290700398e-01;
    const Real InverseCumulativeNormal::d3_ =  2.445134137142996e+00;
    const Real InverseCumulativeNormal::d4_ =  3.754408661907416e+00;

    // Limits of the approximation regions
    const Real InverseCumulativeNormal::x_low_ = 0.02425;
    const Real InverseCumulativeNormal::x_high_= 1.0 - x_low_;

    Real InverseCumulativeNormal::tail_value(Real x) {
        if (x <= 0.0 || x >= 1.0) {
            // try to recover if due to numerical error
            if (close_enough(x, 1.0)) {
                return QL_MAX_REAL; // largest value available
            } else if (std::fabs(x) < QL_EPSILON) {
                return QL_MIN_REAL; // largest negative value available
            } else {
                QL_FAIL("InverseCumulativeNormal(" << x
                        << ") undefined: must be 0 < x < 1");
            }
        }

        Real z;
        if (x < x_low_) {
            // Rational approximation for the lower region 0<x<u_low
            z = std::sqrt(-2.0*std::log(x));
            z = (((((c1_*z+c2_)*z+c3_)*z+c4_)*z+c5_)*z+c6_) /
                ((((d1_*z+d2_)*z+d3_)*z+d4_)*z+1.0);
        } else {
            // Rational approximation for the upper region u_high<x<1
            z = std::sqrt(-2.0*std::log(1.0-x));
            z = -(((((c1_*z+c2_)*z+c3_)*z+c4_)*z+c5_)*z+c6_) /
                ((((d1_*z+d2_)*z+d3_)*z+d4_)*z+1.0);
        }

        return z;
    }

    const Real MoroInverseCumulativeNormal::a0_ =  2.50662823884;
    const Real MoroInverseCumulativeNormal::a1_ =-18.61500062529;
    const Real MoroInverseCumulativeNormal::a2_ = 41.39119773534;
    const Real MoroInverseCumulativeNormal::a3_ =-25.44106049637;

    const Real MoroInverseCumulativeNormal::b0_ = -8.47351093090;
    const Real MoroInverseCumulativeNormal::b1_ = 23.08336743743;
    const Real MoroInverseCumulativeNormal::b2_ =-21.06224101826;
    const Real MoroInverseCumulativeNormal::b3_ =  3.13082909833;

    const Real MoroInverseCumulativeNormal::c0_ = 0.3374754822726147;
    const Real MoroInverseCumulativeNormal::c1_ = 0.9761690190917186;
    const Real MoroInverseCumulativeNormal::c2_ = 0.1607979714918209;
    const Real MoroInverseCumulativeNormal::c3_ = 0.0276438810333863;
    const Real MoroInverseCumulativeNormal::c4_ = 0.0038405729373609;
    const Real MoroInverseCumulativeNormal::c5_ = 0.0003951896511919;
    const Real MoroInverseCumulativeNormal::c6_ = 0.0000321767881768;
    const Real MoroInverseCumulativeNormal::c7_ = 0.0000002888167364;
    const Real MoroInverseCumulativeNormal::c8_ = 0.0000003960315187;

    Real MoroInverseCumulativeNormal::operator()(Real x) const {
        QL_REQUIRE(x > 0.0 && x < 1.0,
                   "MoroInverseCumulativeNormal(" << x
                   << ") undefined: must be 0<x<1");

        Real result;
        Real temp=x-0.5;

        if (std::fabs(temp) < 0.42) {
            // Beasley and Springer, 1977
            result=temp*temp;
            result=temp*
                (((a3_*result+a2_)*result+a1_)*result+a0_) /
                ((((b3_*result+b2_)*result+b1_)*result+b0_)*result+1.0);
        } else {
            // improved approximation for the tail (Moro 1995)
            if (x<0.5)
                result = x;
            else
                result=1.0-x;
            result = std::log(-std::log(result));
            result = c0_+result*(c1_+result*(c2_+result*(c3_+result*
                                   (c4_+result*(c5_+result*(c6_+result*
                                                       (c7_+result*c8_)))))));
            if (x<0.5)
                result=-result;
        }

        return average_ + result*sigma_;
    }

    MaddockInverseCumulativeNormal::MaddockInverseCumulativeNormal(
        Real average, Real sigma)
    : average_(average), sigma_(sigma) {}

    Real MaddockInverseCumulativeNormal::operator()(Real x) const {
        return boost::math::quantile(
            boost::math::normal_distribution<Real>(average_, sigma_), x);
    }

    MaddockCumulativeNormal::MaddockCumulativeNormal(
        Real average, Real sigma)
    : average_(average), sigma_(sigma) {}

    Real MaddockCumulativeNormal::operator()(Real x) const {
        return boost::math::cdf(
            boost::math::normal_distribution<Real>(average_, sigma_), x);
    }
}