File: errorfunction.cpp

package info (click to toggle)
quantlib 1.29-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,032 kB
  • sloc: cpp: 389,443; makefile: 6,658; sh: 4,511; lisp: 86
file content (246 lines) | stat: -rw-r--r-- 11,733 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

// NOTE: The following copyright notice
// applies only to the (modified) code of erff.
//

// erff
// ====
//
// Based on code from the gnu C library, originally written by Sun.
// Modified to remove reliance on features of gcc and 64-bit width
// of doubles. No doubt this results in some slight deterioration
// of efficiency, but this is not really noticeable in testing.
//

//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================


#include <ql/math/errorfunction.hpp>
#include <cfloat>

namespace QuantLib {

    //                 x
    //              2      |
    //     erf(x)  =  ---------  | exp(-t*t)dt
    //           sqrt(pi) \|
    //                 0
    //
    //     erfc(x) =  1-erf(x)
    //  Note that
    //      erf(-x) = -erf(x)
    //      erfc(-x) = 2 - erfc(x)
    //
    // Method:
    //  1. For |x| in [0, 0.84375]
    //      erf(x)  = x + x*R(x^2)
    //          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
    //                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
    //     where R = P/Q where P is an odd poly of degree 8 and
    //     Q is an odd poly of degree 10.
    //                       -57.90
    //          | R - (erf(x)-x)/x | <= 2
    //
    //
    //     Remark. The formula is derived by noting
    //          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
    //     and that
    //          2/sqrt(pi) = 1.128379167095512573896158903121545171688
    //     is close to one. The interval is chosen because the fix
    //     point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
    //     near 0.6174), and by some experiment, 0.84375 is chosen to
    //     guarantee the error is less than one ulp for erf.
    //
    //      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
    //         c = 0.84506291151 rounded to single (24 bits)
    //  erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
    //  erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
    //            1+(c+P1(s)/Q1(s))    if x < 0
    //  |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
    //     Remark: here we use the taylor series expansion at x=1.
    //      erf(1+s) = erf(1) + s*Poly(s)
    //           = 0.845.. + P1(s)/Q1(s)
    //     That is, we use rational approximation to approximate
    //          erf(1+s) - (c = (single)0.84506291151)
    //     Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
    //     where
    //      P1(s) = degree 6 poly in s
    //      Q1(s) = degree 6 poly in s
    //
    //      3. For x in [1.25,1/0.35(~2.857143)],
    //  erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
    //  erf(x)  = 1 - erfc(x)
    //     where
    //      R1(z) = degree 7 poly in z, (z=1/x^2)
    //      S1(z) = degree 8 poly in z
    //
    //      4. For x in [1/0.35,28]
    //  erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
    //          = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
    //          = 2.0 - tiny        (if x <= -6)
    //  erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
    //  erf(x)  = sign(x)*(1.0 - tiny)
    //     where
    //      R2(z) = degree 6 poly in z, (z=1/x^2)
    //      S2(z) = degree 7 poly in z
    //
    //      Note1:
    //     To compute exp(-x*x-0.5625+R/S), let s be a single
    //     precision number and s := x; then
    //      -x*x = -s*s + (s-x)*(s+x)
    //          exp(-x*x-0.5626+R/S) =
    //          exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
    //      Note2:
    //     Here 4 and 5 make use of the asymptotic series
    //            exp(-x*x)
    //      erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
    //            x*sqrt(pi)
    //     We use rational approximation to approximate
    //  g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
    //     Here is the error bound for R1/S1 and R2/S2
    //  |R1/S1 - f(x)|  < 2**(-62.57)
    //  |R2/S2 - f(x)|  < 2**(-61.52)
    //
    //      5. For inf > x >= 28
    //  erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
    //  erfc(x) = tiny*tiny (raise underflow) if x > 0
    //          = 2 - tiny if x<0
    //
    //      7. Special case:
    //  erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
    //  erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
    //      erfc/erf(NaN) is NaN

    const Real
    ErrorFunction::tiny =  QL_EPSILON,
        ErrorFunction::one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
        /* c = (float)0.84506291151 */
        ErrorFunction::erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
        //
        // Coefficients for approximation to  erf on [0,0.84375]
        //
        ErrorFunction::efx  =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
        ErrorFunction::efx8 =  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
        ErrorFunction::pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
        ErrorFunction::pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
        ErrorFunction::pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
        ErrorFunction::pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
        ErrorFunction::pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
        ErrorFunction::qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
        ErrorFunction::qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
        ErrorFunction::qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
        ErrorFunction::qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
        ErrorFunction::qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
        //
        // Coefficients for approximation to  erf  in [0.84375,1.25]
        //
        ErrorFunction::pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
        ErrorFunction::pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
        ErrorFunction::pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
        ErrorFunction::pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
        ErrorFunction::pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
        ErrorFunction::pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
        ErrorFunction::pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
        ErrorFunction::qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
        ErrorFunction::qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
        ErrorFunction::qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
        ErrorFunction::qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
        ErrorFunction::qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
        ErrorFunction::qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
        //
        // Coefficients for approximation to  erfc in [1.25,1/0.35]
        //
        ErrorFunction::ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
        ErrorFunction::ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
        ErrorFunction::ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
        ErrorFunction::ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
        ErrorFunction::ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
        ErrorFunction::ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
        ErrorFunction::ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
        ErrorFunction::ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
        ErrorFunction::sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
        ErrorFunction::sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
        ErrorFunction::sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
        ErrorFunction::sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
        ErrorFunction::sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
        ErrorFunction::sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
        ErrorFunction::sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
        ErrorFunction::sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
        //
        // Coefficients for approximation to  erfc in [1/.35,28]
        //
        ErrorFunction::rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
        ErrorFunction::rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
        ErrorFunction::rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
        ErrorFunction::rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
        ErrorFunction::rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
        ErrorFunction::rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
        ErrorFunction::rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
        ErrorFunction::sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
        ErrorFunction::sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
        ErrorFunction::sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
        ErrorFunction::sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
        ErrorFunction::sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
        ErrorFunction::sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
        ErrorFunction::sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */

    Real ErrorFunction::operator()(Real x) const {

        Real R,S,P,Q,s,y,z,r, ax;

        if (!std::isfinite(x)) {
            if (std::isnan(x))
                return x;
            else
                return ( x > 0 ? 1 : -1);
        }

        ax = std::fabs(x);

        if(ax < 0.84375) {      /* |x|<0.84375 */
            if(ax < 3.7252902984e-09) { /* |x|<2**-28 */
                if (ax < DBL_MIN*16)
                    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
                return x + efx*x;
            }
            z = x*x;
            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
            y = r/s;
            return x + x*y;
        }
        if(ax <1.25) {      /* 0.84375 <= |x| < 1.25 */
            s = ax-one;
            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
            if(x>=0) return erx + P/Q; else return -erx - P/Q;
        }
        if (ax >= 6) {      /* inf>|x|>=6 */
            if(x>=0) return one-tiny; else return tiny-one;
        }

        /* Starts to lose accuracy when ax~5 */
        s = one/(ax*ax);

        if(ax < 2.85714285714285) { /* |x| < 1/0.35 */
            R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
            S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
        } else {    /* |x| >= 1/0.35 */
            R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))));
            S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
        }
        r = std::exp( -ax*ax-0.5625 +R/S);
        if(x>=0) return one-r/ax; else return  r/ax-one;

    }

}