File: exponentialintegrals.cpp

package info (click to toggle)
quantlib 1.29-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,032 kB
  • sloc: cpp: 389,443; makefile: 6,658; sh: 4,511; lisp: 86
file content (182 lines) | stat: -rw-r--r-- 6,973 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2020 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file exponentialintegrals.cpp
*/


#include <ql/errors.hpp>
#include <ql/mathconstants.hpp>
#include <ql/math/integrals/exponentialintegrals.hpp>

#include <cmath>

#ifndef M_EULER_MASCHERONI
    #define M_EULER_MASCHERONI 0.5772156649015328606065121
#endif

namespace QuantLib {
    namespace exponential_integrals_helper {

        // Reference:
        // Rowe et al: GALSIM: The modular galaxy image simulation toolkit
        // https://arxiv.org/abs/1407.7676

        Real f(Real x) {
            const Real x2 = 1.0/(x*x);

            return (
                1 + x2*(7.44437068161936700618e2 + x2*(1.96396372895146869801e5
                  + x2*(2.37750310125431834034e7 + x2*(1.43073403821274636888e9
                  + x2*(4.33736238870432522765e10 + x2*(6.40533830574022022911e11
                  + x2*(4.20968180571076940208e12 + x2*(1.00795182980368574617e13
                  + x2*(4.94816688199951963482e12 - x2*4.94701168645415959931e11)))))))))
                )/(x *(
                1 + x2*(7.46437068161927678031e2 + x2*(1.97865247031583951450e5
                  + x2*(2.41535670165126845144e7 + x2*(1.47478952192985464958e9
                  + x2*(4.58595115847765779830e10 + x2*(7.08501308149515401563e11
                  + x2*(5.06084464593475076774e12 + x2*(1.43468549171581016479e13
                  + x2*1.11535493509914254097e13))))))))
                ) );
        }

        Real g(Real x) {
            const Real x2 = 1.0/(x*x);

            return x2*(
                1 + x2*(8.1359520115168615e2 + x2*(2.35239181626478200e5
                  + x2*(3.12557570795778731e7 + x2*(2.06297595146763354e9
                  + x2*(6.83052205423625007e10 + x2*(1.09049528450362786e12
                  + x2*(7.57664583257834349e12 + x2*(1.81004487464664575e13
                  + x2*(6.43291613143049485e12 - x2*1.36517137670871689e12)))))))))
                )/(
                1 + x2*(8.19595201151451564e2 + x2*(2.40036752835578777e5
                  + x2*(3.26026661647090822e7 + x2*(2.23355543278099360e9
                  + x2*(7.87465017341829930e10 + x2*(1.39866710696414565e12
                  + x2*(1.17164723371736605e13 + x2*(4.01839087307656620e13
                  + x2*3.99653257887490811e13))))))))
                );
        }
    }

    namespace ExponentialIntegral {
        Real Si(Real x) {
            if (x < 0)
                return -Si(Real(-x));
            else if (x <= 4.0) {
                const Real x2 = x*x;

                return x*
                    ( 1 + x2*(-4.54393409816329991e-2 + x2*(1.15457225751016682e-3
                        + x2*(-1.41018536821330254e-5 + x2*(9.43280809438713025e-8
                        + x2*(-3.53201978997168357e-10 + x2*(7.08240282274875911e-13
                        - x2*6.05338212010422477e-16))))))
                    ) / (
                      1 + x2*(1.01162145739225565e-2 + x2*(4.99175116169755106e-5
                        + x2*(1.55654986308745614e-7 + x2*(3.28067571055789734e-10
                        + x2*(4.5049097575386581e-13 + x2*3.21107051193712168e-16)))))
                    );
            }
            else {
                using namespace exponential_integrals_helper;
                return M_PI_2 - f(x)*std::cos(x) - g(x)*std::sin(x);
            }
        }

        Real Ci(Real x) {
            QL_REQUIRE(x >= 0, "x < 0 => Ci(x) = Ci(-x) + i*pi");

            if (x <= 4.0) {
                const Real x2 = x*x;

                return M_EULER_MASCHERONI + std::log(x) +
                    x2* ( -0.25 + x2*(7.51851524438898291e-3 +x2*(-1.27528342240267686e-4
                                + x2*(1.05297363846239184e-6 +x2*(-4.68889508144848019e-9
                                + x2*(1.06480802891189243e-11 - x2*9.93728488857585407e-15)))))
                    ) / (
                         1 + x2*(1.1592605689110735e-2 + x2*(6.72126800814254432e-5
                           + x2*(2.55533277086129636e-7 + x2*(6.97071295760958946e-10
                           + x2*(1.38536352772778619e-12 + x2*(1.89106054713059759e-15
                           + x2*1.39759616731376855e-18))))))
                    );
            }
            else {
                using namespace exponential_integrals_helper;
                return f(x)*std::sin(x) - g(x)*std::cos(x);
            }
        }


        std::complex<Real> E1(std::complex<Real> z) {
            QL_REQUIRE(std::abs(z) <= 25.0, "Insufficient precision for |z| > 25.0");

            std::complex<Real> s(0.0), sn(-z);

            Size n;
            for (n=2; n < 1000 && s + sn/Real(n-1) != s; ++n) {
                s+=sn/Real(n-1);
                sn *= -z/Real(n);
            }

            QL_REQUIRE(n < 1000, "series conversion issue");

            return -M_EULER_MASCHERONI - std::log(z) -s;
        }

        std::complex<Real> Ei(std::complex<Real> z) {
            QL_REQUIRE(std::abs(z) <= 25.0, "Insufficient precision for |z| > 25.0");

            std::complex<Real> s(0.0), sn=z;

            Real nn=1.0;

            Size n;
            for (n=2; n < 1000 && s+sn*nn != s; ++n) {
                s+=sn*nn;

                if ((n & 1) != 0U)
                    nn += 1/(2.0*(n/2) + 1); // NOLINT(bugprone-integer-division)

                sn *= -z / Real(2*n);
            }

            QL_REQUIRE(n < 1000, "series conversion issue");

            return M_EULER_MASCHERONI + std::log(z) + std::exp(0.5*z)*s;
        }

        // Reference:
        // https://functions.wolfram.com/GammaBetaErf/ExpIntegralEi/introductions/ExpIntegrals/ShowAll.html
        std::complex<Real> Si(std::complex<Real> z) {
            const std::complex<Real> i(0.0, 1.0);

            return 0.25*i*(2.0*(Ei(-i*z) - Ei(i*z))
                    + std::log(i/z) - std::log(-i/z) - std::log(-i*z)
                    + std::log(i*z));
        }

        std::complex<Real> Ci(std::complex<Real> z) {
            const std::complex<Real> i(0.0, 1.0);

            return 0.25*(2.0*(Ei(-i*z) + Ei(i*z))
                    + std::log(i/z) + std::log(-i/z) - std::log(-i*z)
                    - std::log(i*z)) + std::log(z);
        }
    }
}