1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 François du Vignaud
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/matrixutilities/tapcorrelations.hpp>
#include <cmath>
namespace QuantLib {
Matrix triangularAnglesParametrization(const Array& angles,
Size matrixSize,
Size rank) {
// what if rank == 1?
QL_REQUIRE((rank-1) * (2*matrixSize - rank) == 2*angles.size(),
"rank-1) * (matrixSize - rank/2) == angles.size()");
Matrix m(matrixSize, matrixSize);
// first row filling
m[0][0] = 1.0;
for (Size j=1; j<matrixSize; ++j)
m[0][j] = 0.0;
// next ones...
Size k = 0; //angles index
for (Size i=1; i<m.rows(); ++i) {
Real sinProduct = 1.0;
Size bound = std::min(i,rank-1);
for (Size j=0; j<bound; ++j) {
m[i][j] = std::cos(angles[k]);
m[i][j] *= sinProduct;
sinProduct *= std::sin(angles[k]);
++k;
}
m[i][bound] = sinProduct;
for (Size j=bound+1; j<m.rows(); ++j)
m[i][j] = 0;
}
return m;
}
Matrix lmmTriangularAnglesParametrization(const Array& angles,
Size matrixSize,
Size) {
Matrix m(matrixSize, matrixSize);
for (Size i=0; i<m.rows(); ++i) {
Real cosPhi, sinPhi;
if (i>0) {
cosPhi = std::cos(angles[i-1]);
sinPhi = std::sin(angles[i-1]);
} else {
cosPhi = 1.0;
sinPhi = 0.0;
}
for (Size j=0; j<i; ++j)
m[i][j] = sinPhi * m[i-1][j];
m[i][i] = cosPhi;
for (Size j=i+1; j<m.rows(); ++j)
m[i][j] = 0.0;
}
return m;
}
Matrix triangularAnglesParametrizationUnconstrained(const Array& x,
Size matrixSize,
Size rank) {
Array angles(x.size());
//we convert the unconstrained parameters in angles
for (Size i = 0; i < x.size(); ++i)
angles[i] = M_PI*.5 - std::atan(x[i]);
return triangularAnglesParametrization(angles, matrixSize, rank);
}
Matrix lmmTriangularAnglesParametrizationUnconstrained(const Array& x,
Size matrixSize,
Size rank) {
Array angles(x.size());
//we convert the unconstrained parameters in angles
for (Size i = 0; i < x.size(); ++i)
angles[i] = M_PI*.5 - std::atan(x[i]);
return lmmTriangularAnglesParametrization(angles, matrixSize, rank);
}
Matrix triangularAnglesParametrizationRankThree(Real alpha, Real t0,
Real epsilon, Size matrixSize) {
Matrix m(matrixSize, 3);
for (Size i=0; i<m.rows(); ++i) {
Real t = t0 * (1 - std::exp(epsilon*Real(i)));
Real phi = std::atan(alpha * t);
m[i][0] = std::cos(t)*std::cos(phi);
m[i][1] = std::sin(t)*std::cos(phi);
m[i][2] = -std::sin(phi);
}
return m;
}
Matrix triangularAnglesParametrizationRankThreeVectorial(const Array& parameters,
Size nbRows) {
QL_REQUIRE(parameters.size() == 3,
"the parameter array must contain exactly 3 values" );
return triangularAnglesParametrizationRankThree(parameters[0],
parameters[1],
parameters[2],
nbRows);
}
Real FrobeniusCostFunction::value(const Array& x) const {
Array temp = values(x);
return DotProduct(temp, temp);
}
Array FrobeniusCostFunction::values(const Array& x) const {
Array result((target_.rows()*(target_.columns()-1))/2);
Matrix pseudoRoot = f_(x, matrixSize_, rank_);
Matrix differences = pseudoRoot * transpose(pseudoRoot) - target_;
Size k = 0;
// then we store the elementwise differences in a vector.
for (Size i=0; i<target_.rows(); ++i) {
for (Size j=0; j<i; ++j){
result[k] = differences[i][j];
++k;
}
}
return result;
}
}
|