1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file modifiedbessel.cpp
\brief modified Bessel functions of first and second kind
*/
#include <ql/math/modifiedbessel.hpp>
#include <ql/math/distributions/gammadistribution.hpp>
#include <cmath>
namespace QuantLib {
namespace {
template <class T> struct I {};
template <> struct I<Real> { Real value() { return 0.0;} };
template <> struct I<std::complex<Real> > {
std::complex<Real> value() { return std::complex<Real>(0.0,1.0);}
};
template <class T> struct Unweighted {
T weightSmallX(const T& x) { return 1.0; }
T weight1LargeX(const T& x) { return std::exp(x); }
T weight2LargeX(const T& x) { return std::exp(-x); }
};
template <class T> struct ExponentiallyWeighted {
T weightSmallX(const T& x) { return std::exp(-x); }
T weight1LargeX(const T& x) { return 1.0; }
T weight2LargeX(const T& x) { return std::exp(-2.0*x); }
};
template <class T, template <class> class W>
T modifiedBesselFunction_i_impl(Real nu, const T& x) {
if (std::abs(x) < 13.0) {
const T alpha = std::pow(0.5*x, nu)
/GammaFunction().value(1.0+nu);
const T Y = 0.25*x*x;
Size k=1;
T sum=alpha, B_k=alpha;
while (std::abs(B_k*=Y/(k*(k+nu)))>std::abs(sum)*QL_EPSILON) {
sum += B_k;
QL_REQUIRE(++k < 1000, "max iterations exceeded");
}
return sum * W<T>().weightSmallX(x);
}
else {
Real na_k=1.0, sign=1.0;
T da_k=T(1.0);
T s1=T(1.0), s2=T(1.0);
for (Size k=1; k < 30; ++k) {
sign*=-1;
na_k *= (4.0 * nu * nu -
(2.0 * static_cast<Real>(k) - 1.0) *
(2.0 * static_cast<Real>(k) - 1.0));
da_k *= (8.0 * k) * x;
const T a_k = na_k/da_k;
s2+=a_k;
s1+=sign*a_k;
}
const T i = I<T>().value();
return 1.0 / std::sqrt(2 * M_PI * x) *
(W<T>().weight1LargeX(x) * s1 +
i * std::exp(i * nu * M_PI) * W<T>().weight2LargeX(x) * s2);
}
}
template <class T, template <class> class W>
T modifiedBesselFunction_k_impl(Real nu, const T& x) {
return M_PI_2 * (modifiedBesselFunction_i_impl<T,W>(-nu, x) -
modifiedBesselFunction_i_impl<T,W>(nu, x)) /
std::sin(M_PI * nu);
}
}
Real modifiedBesselFunction_i(Real nu, Real x) {
QL_REQUIRE(x >= 0.0, "negative argument requires complex version of "
"modifiedBesselFunction");
return modifiedBesselFunction_i_impl<Real, Unweighted>(nu, x);
}
std::complex<Real> modifiedBesselFunction_i(Real nu,
const std::complex<Real> &z) {
if (z.imag() == 0.0 && z.real() >= 0.0)
return std::complex<Real>(modifiedBesselFunction_i(nu, z.real()));
return modifiedBesselFunction_i_impl<
std::complex<Real>, Unweighted>(nu, z);
}
Real modifiedBesselFunction_k(Real nu, Real x) {
return modifiedBesselFunction_k_impl<Real, Unweighted>(nu, x);
}
std::complex<Real> modifiedBesselFunction_k(Real nu,
const std::complex<Real> &z) {
if (z.imag() == 0.0 && z.real() >= 0.0)
return std::complex<Real>(modifiedBesselFunction_k(nu, z.real()));
return modifiedBesselFunction_k_impl<
std::complex<Real>, Unweighted>(nu, z);
}
Real modifiedBesselFunction_i_exponentiallyWeighted(Real nu, Real x) {
QL_REQUIRE(x >= 0.0, "negative argument requires complex version of "
"modifiedBesselFunction");
return modifiedBesselFunction_i_impl<Real, ExponentiallyWeighted>(
nu, x);
}
std::complex<Real> modifiedBesselFunction_i_exponentiallyWeighted(
Real nu, const std::complex<Real> &z) {
if (z.imag() == 0.0 && z.real() >= 0.0)
return std::complex<Real>(
modifiedBesselFunction_i_exponentiallyWeighted(nu, z.real()));
return modifiedBesselFunction_i_impl<
std::complex<Real>, ExponentiallyWeighted>(nu, z);
}
Real modifiedBesselFunction_k_exponentiallyWeighted(Real nu, Real x) {
return modifiedBesselFunction_k_impl<Real, ExponentiallyWeighted>(
nu, x);
}
std::complex<Real> modifiedBesselFunction_k_exponentiallyWeighted(
Real nu, const std::complex<Real> &z) {
if (z.imag() == 0.0 && z.real() >= 0.0)
return std::complex<Real>(
modifiedBesselFunction_k_exponentiallyWeighted(nu, z.real()));
return modifiedBesselFunction_k_impl<
std::complex<Real>, ExponentiallyWeighted>(nu, z);
}
}
|