1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006, 2007 Ferdinando Ametrano
Copyright (C) 2007 Marco Bianchetti
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/optimization/endcriteria.hpp>
#include <ql/errors.hpp>
#include <algorithm>
namespace QuantLib {
EndCriteria::EndCriteria(Size maxIterations,
Size maxStationaryStateIterations,
Real rootEpsilon,
Real functionEpsilon,
Real gradientNormEpsilon)
: maxIterations_(maxIterations),
maxStationaryStateIterations_(maxStationaryStateIterations),
rootEpsilon_(rootEpsilon),
functionEpsilon_(functionEpsilon),
gradientNormEpsilon_(gradientNormEpsilon) {
if (maxStationaryStateIterations_ == Null<Size>())
maxStationaryStateIterations_ = std::min(static_cast<Size>(maxIterations/2),
static_cast<Size>(100));
QL_REQUIRE(maxStationaryStateIterations_>1,
"maxStationaryStateIterations_ (" <<
maxStationaryStateIterations_ <<
") must be greater than one");
QL_REQUIRE(maxStationaryStateIterations_<maxIterations_,
"maxStationaryStateIterations_ (" <<
maxStationaryStateIterations_ <<
") must be less than maxIterations_ (" <<
maxIterations_ << ")");
if (gradientNormEpsilon_ == Null<Real>())
gradientNormEpsilon_ = functionEpsilon_;
}
bool EndCriteria::checkMaxIterations(const Size iteration,
EndCriteria::Type& ecType) const{
if (iteration < maxIterations_)
return false;
ecType = MaxIterations;
return true;
}
bool EndCriteria::checkStationaryPoint(const Real xOld,
const Real xNew,
Size& statStateIterations,
EndCriteria::Type& ecType) const {
if (std::fabs(xNew-xOld) >= rootEpsilon_) {
statStateIterations = 0;
return false;
}
++statStateIterations;
if (statStateIterations <= maxStationaryStateIterations_)
return false;
ecType = StationaryPoint;
return true;
}
bool EndCriteria::checkStationaryFunctionValue(
const Real fxOld,
const Real fxNew,
Size& statStateIterations,
EndCriteria::Type& ecType) const {
if (std::fabs(fxNew-fxOld) >= functionEpsilon_) {
statStateIterations = 0;
return false;
}
++statStateIterations;
if (statStateIterations <= maxStationaryStateIterations_)
return false;
ecType = StationaryFunctionValue;
return true;
}
bool EndCriteria::checkStationaryFunctionAccuracy(
const Real f,
const bool positiveOptimization,
EndCriteria::Type& ecType) const {
if (!positiveOptimization)
return false;
if (f >= functionEpsilon_)
return false;
ecType = StationaryFunctionAccuracy;
return true;
}
//bool EndCriteria::checkZerGradientNormValue(
// const Real gNormOld,
// const Real gNormNew,
// EndCriteria::Type& ecType) const {
// if (std::fabs(gNormNew-gNormOld) >= gradientNormEpsilon_)
// return false;
// ecType = StationaryGradient;
// return true;
//}
bool EndCriteria::checkZeroGradientNorm(const Real gradientNorm,
EndCriteria::Type& ecType) const {
if (gradientNorm >= gradientNormEpsilon_)
return false;
ecType = ZeroGradientNorm;
return true;
}
bool EndCriteria::operator()(const Size iteration,
Size& statStateIterations,
const bool positiveOptimization,
const Real fold,
const Real, //normgold,
const Real fnew,
const Real normgnew,
EndCriteria::Type& ecType) const {
return
checkMaxIterations(iteration, ecType) ||
checkStationaryFunctionValue(fold, fnew, statStateIterations, ecType) ||
checkStationaryFunctionAccuracy(fnew, positiveOptimization, ecType) ||
checkZeroGradientNorm(normgnew, ecType);
}
// Inspectors
Size EndCriteria::maxIterations() const {
return maxIterations_;
}
Size EndCriteria::maxStationaryStateIterations() const {
return maxStationaryStateIterations_;
}
Real EndCriteria::rootEpsilon() const {
return rootEpsilon_;
}
Real EndCriteria::functionEpsilon() const {
return functionEpsilon_;
}
Real EndCriteria::gradientNormEpsilon() const {
return gradientNormEpsilon_;
}
std::ostream& operator<<(std::ostream& out, EndCriteria::Type ec) {
switch (ec) {
case QuantLib::EndCriteria::None:
return out << "None";
case QuantLib::EndCriteria::MaxIterations:
return out << "MaxIterations";
case QuantLib::EndCriteria::StationaryPoint:
return out << "StationaryPoint";
case QuantLib::EndCriteria::StationaryFunctionValue:
return out << "StationaryFunctionValue";
case QuantLib::EndCriteria::StationaryFunctionAccuracy:
return out << "StationaryFunctionAccuracy";
case QuantLib::EndCriteria::ZeroGradientNorm:
return out << "ZeroGradientNorm";
case QuantLib::EndCriteria::Unknown:
return out << "Unknown";
default:
QL_FAIL("unknown EndCriteria::Type (" << Integer(ec) << ")");
}
}
}
|