File: leastsquare.cpp

package info (click to toggle)
quantlib 1.29-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,032 kB
  • sloc: cpp: 389,443; makefile: 6,658; sh: 4,511; lisp: 86
file content (118 lines) | stat: -rw-r--r-- 4,590 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré
 Copyright (C) 2005 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/optimization/conjugategradient.hpp>
#include <ql/math/optimization/leastsquare.hpp>
#include <ql/math/optimization/problem.hpp>
#include <utility>

namespace QuantLib {

    Real LeastSquareFunction::value(const Array & x) const {
        // size of target and function to fit vectors
        Array target(lsp_.size()), fct2fit(lsp_.size());
        // compute its values
        lsp_.targetAndValue(x, target, fct2fit);
        // do the difference
        Array diff = target - fct2fit;
        // and compute the scalar product (square of the norm)
        return DotProduct(diff, diff);
    }

    Array LeastSquareFunction::values(const Array& x) const {
        // size of target and function to fit vectors
        Array target(lsp_.size()), fct2fit(lsp_.size());
        // compute its values
        lsp_.targetAndValue(x, target, fct2fit);
        // do the difference
        Array diff = target - fct2fit;
        return diff*diff;
    }

    void LeastSquareFunction::gradient(Array& grad_f,
                                       const Array& x) const {
        // size of target and function to fit vectors
        Array target (lsp_.size ()), fct2fit (lsp_.size ());
        // size of gradient matrix
        Matrix grad_fct2fit (lsp_.size (), x.size ());
        // compute its values
        lsp_.targetValueAndGradient(x, grad_fct2fit, target, fct2fit);
        // do the difference
        Array diff = target - fct2fit;
        // compute derivative
        grad_f = -2.0*(transpose(grad_fct2fit)*diff);
    }

    Real LeastSquareFunction::valueAndGradient(Array& grad_f,
                                               const Array& x) const {
        // size of target and function to fit vectors
        Array target(lsp_.size()), fct2fit(lsp_.size());
        // size of gradient matrix
        Matrix grad_fct2fit(lsp_.size(), x.size());
        // compute its values
        lsp_.targetValueAndGradient(x, grad_fct2fit, target, fct2fit);
        // do the difference
        Array diff = target - fct2fit;
        // compute derivative
        grad_f = -2.0*(transpose(grad_fct2fit)*diff);
        // and compute the scalar product (square of the norm)
        return DotProduct(diff, diff);
    }

    NonLinearLeastSquare::NonLinearLeastSquare(Constraint& c,
                                               Real accuracy,
                                               Size maxiter)
    : exitFlag_(-1), accuracy_ (accuracy), maxIterations_ (maxiter),
      om_ (ext::shared_ptr<OptimizationMethod>(new ConjugateGradient())),
      c_(c)
    {}

    NonLinearLeastSquare::NonLinearLeastSquare(Constraint& c,
                                               Real accuracy,
                                               Size maxiter,
                                               ext::shared_ptr<OptimizationMethod> om)
    : exitFlag_(-1), accuracy_(accuracy), maxIterations_(maxiter), om_(std::move(om)), c_(c) {}

    Array& NonLinearLeastSquare::perform(LeastSquareProblem& lsProblem) {
        Real eps = accuracy_;

        // wrap the least square problem in an optimization function
        LeastSquareFunction lsf(lsProblem);

        // define optimization problem
        Problem P(lsf, c_, initialValue_);

        // minimize
        EndCriteria ec(maxIterations_,
            std::min(static_cast<Size>(maxIterations_/2), static_cast<Size>(100)),
            eps, eps, eps);
        exitFlag_ = om_->minimize(P, ec);

        // summarize results of minimization
        //        nbIterations_ = om_->iterationNumber();

        results_ = P.currentValue();
        resnorm_ = P.functionValue();
        bestAccuracy_ = P.functionValue();

        return results_;
    }

}