1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2006 Ferdinando Ametrano
Copyright (C) 2007 Marco Bianchetti
Copyright (C) 2007 François du Vignaud
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/* The implementation of the algorithm was highly inspired by
* "Numerical Recipes in C", 2nd edition, Press, Teukolsky, Vetterling,
* Flannery, chapter 10.
* Modified may 2007: end criteria set on x instead on fx,
* inspired by bad behaviour found with test function fx=x*x+x+1,
* xStart = -100, lambda = 1.0, ftol = 1.e-16
* (it reports x=0 as the minimum!)
* and by GSL implementation, v. 1.9 (http://www.gnu.org/software/gsl/)
*/
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/constraint.hpp>
#if !defined(__GNUC__) || __GNUC__ > 3 || __GNUC_MINOR__ > 4
#define QL_ARRAY_EXPRESSIONS
#endif
namespace QuantLib {
namespace {
// Computes the size of the simplex
Real computeSimplexSize (const std::vector<Array>& vertices) {
Array center(vertices.front().size(),0);
for (const auto& vertice : vertices)
center += vertice;
center *=1/Real(vertices.size());
Real result = 0;
for (const auto& vertice : vertices) {
Array temp = vertice - center;
result += Norm2(temp);
}
return result/Real(vertices.size());
}
}
Real Simplex::extrapolate(Problem& P,
Size iHighest,
Real &factor) const {
Array pTry;
do {
Size dimensions = values_.size() - 1;
Real factor1 = (1.0 - factor)/dimensions;
Real factor2 = factor1 - factor;
#if defined(QL_ARRAY_EXPRESSIONS)
pTry = sum_*factor1 - vertices_[iHighest]*factor2;
#else
// composite expressions fail to compile with gcc 3.4 on windows
pTry = sum_*factor1;
pTry -= vertices_[iHighest]*factor2;
#endif
factor *= 0.5;
} while (!P.constraint().test(pTry) && std::fabs(factor) > QL_EPSILON);
if (std::fabs(factor) <= QL_EPSILON) {
return values_[iHighest];
}
factor *= 2.0;
Real vTry = P.value(pTry);
if (vTry < values_[iHighest]) {
values_[iHighest] = vTry;
#if defined(QL_ARRAY_EXPRESSIONS)
sum_ += pTry - vertices_[iHighest];
#else
sum_ += pTry;
sum_ -= vertices_[iHighest];
#endif
vertices_[iHighest] = pTry;
}
return vTry;
}
EndCriteria::Type Simplex::minimize(Problem& P,
const EndCriteria& endCriteria) {
// set up of the problem
//Real ftol = endCriteria.functionEpsilon(); // end criteria on f(x) (see Numerical Recipes in C++, p.410)
Real xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/)
Size maxStationaryStateIterations_
= endCriteria.maxStationaryStateIterations();
EndCriteria::Type ecType = EndCriteria::None;
P.reset();
Array x_ = P.currentValue();
if (!P.constraint().test(x_))
QL_FAIL("Initial guess " << x_ << " is not in the feasible region.");
Integer iterationNumber_=0;
// Initialize vertices of the simplex
Size n = x_.size();
vertices_ = std::vector<Array>(n+1, x_);
for (Size i=0; i<n; ++i) {
Array direction(n, 0.0);
direction[i] = 1.0;
P.constraint().update(vertices_[i+1], direction, lambda_);
}
// Initialize function values at the vertices of the simplex
values_ = Array(n+1, 0.0);
for (Size i=0; i<=n; ++i)
values_[i] = P.value(vertices_[i]);
// Loop looking for minimum
do {
sum_ = Array(n, 0.0);
Size i;
for (i=0; i<=n; i++)
sum_ += vertices_[i];
// Determine the best (iLowest), worst (iHighest)
// and 2nd worst (iNextHighest) vertices
Size iLowest = 0;
Size iHighest, iNextHighest;
if (values_[0]<values_[1]) {
iHighest = 1;
iNextHighest = 0;
} else {
iHighest = 0;
iNextHighest = 1;
}
for (i=1;i<=n; i++) {
if (values_[i]>values_[iHighest]) {
iNextHighest = iHighest;
iHighest = i;
} else {
if ((values_[i]>values_[iNextHighest]) && i!=iHighest)
iNextHighest = i;
}
if (values_[i]<values_[iLowest])
iLowest = i;
}
// Now compute accuracy, update iteration number and check end criteria
//// Numerical Recipes exit strategy on fx (see NR in C++, p.410)
//Real low = values_[iLowest];
//Real high = values_[iHighest];
//Real rtol = 2.0*std::fabs(high - low)/
// (std::fabs(high) + std::fabs(low) + QL_EPSILON);
//++iterationNumber_;
//if (rtol < ftol ||
// endCriteria.checkMaxIterations(iterationNumber_, ecType)) {
// GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl
Real simplexSize = computeSimplexSize(vertices_);
++iterationNumber_;
if (simplexSize < xtol ||
endCriteria.checkMaxIterations(iterationNumber_, ecType)) {
endCriteria.checkStationaryPoint(0.0, 0.0,
maxStationaryStateIterations_, ecType);
endCriteria.checkMaxIterations(iterationNumber_, ecType);
x_ = vertices_[iLowest];
Real low = values_[iLowest];
P.setFunctionValue(low);
P.setCurrentValue(x_);
return ecType;
}
// If end criteria is not met, continue
Real factor = -1.0;
Real vTry = extrapolate(P, iHighest, factor);
if ((vTry <= values_[iLowest]) && (factor == -1.0)) {
factor = 2.0;
extrapolate(P, iHighest, factor);
} else if (std::fabs(factor) > QL_EPSILON) {
if (vTry >= values_[iNextHighest]) {
Real vSave = values_[iHighest];
factor = 0.5;
vTry = extrapolate(P, iHighest, factor);
if (vTry >= vSave && std::fabs(factor) > QL_EPSILON) {
for (Size i=0; i<=n; i++) {
if (i!=iLowest) {
#if defined(QL_ARRAY_EXPRESSIONS)
vertices_[i] =
0.5*(vertices_[i] + vertices_[iLowest]);
#else
vertices_[i] += vertices_[iLowest];
vertices_[i] *= 0.5;
#endif
values_[i] = P.value(vertices_[i]);
}
}
}
}
}
// If can't extrapolate given the constraints, exit
if (std::fabs(factor) <= QL_EPSILON) {
x_ = vertices_[iLowest];
Real low = values_[iLowest];
P.setFunctionValue(low);
P.setCurrentValue(x_);
return EndCriteria::StationaryFunctionValue;
}
} while (true);
QL_FAIL("optimization failed: unexpected behaviour");
}
}
|