1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004 Ferdinando Ametrano
Copyright (C) 2004 Gianni Piolanti
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/randomnumbers/faurersg.hpp>
#include <ql/math/primenumbers.hpp>
namespace QuantLib {
FaureRsg::FaureRsg(Size dimensionality)
: dimensionality_(dimensionality),
// sequenceCounter_(0),
sequence_(std::vector<Real> (dimensionality), 1.0),
integerSequence_(dimensionality, 0) {
QL_REQUIRE(dimensionality>0,
"dimensionality must be greater than 0");
// base is the lowest prime number >= dimensionality_
Size i, j, k=1;
base_=2;
while (base_<dimensionality_) {
base_ = (Size)PrimeNumbers::get(k);
k++;
}
mbit_=(Size)(std::log((double)std::numeric_limits<long int>::max())/
std::log((double)base_));
gray_ = std::vector<std::vector<long int> >(dimensionality_,
std::vector<long int>(mbit_+1, 0));
bary_ = std::vector<long int>(mbit_+1, 0);
//setMatrixValues();
powBase_ = std::vector<std::vector<long int> >(mbit_,
std::vector<long int>(2*base_-1, 0));
powBase_[mbit_-1][base_] = 1;
for (int i2=mbit_-2; i2>=0; --i2)
powBase_[i2][base_] = powBase_[i2+1][base_] * base_;
for (int ii=0; ii<(int)mbit_; ii++) {
for (int j1=base_+1; j1<2*(int)base_-1; j1++ )
powBase_[ii][j1] = powBase_[ii][j1-1] + powBase_[ii][base_];
for (int j2=base_-1; j2>=0; --j2)
powBase_[ii][j2] = powBase_[ii][j2+1] - powBase_[ii][base_];
}
addOne_.resize(base_);
for (j=0; j<base_ ; j++)
addOne_[j] = (j+1) % base_;
//setPascalMatrix();
for (k=0; k<mbit_; k++) {
std::vector<std::vector<long int> > mm(dimensionality_+1,
std::vector<long int>(k+1, 0));
pascal3D.push_back(mm);
pascal3D[k][0][k] = 1;
pascal3D[k][1][0] = 1;
pascal3D[k][1][k] = 1;
}
long int p1, p2;
for (k=2; k<mbit_ ; k++) {
for (i=1; i<k ; i++) {
p1 = pascal3D[k-1][1][i-1];
p2 = pascal3D[k-1][1][i];
pascal3D[k][1][i] = (p1+p2) % base_;
}
}
long int fact = 1, diag;
for (j=2; j<dimensionality_; j++) {
for (long int kk=mbit_-1; kk>=0 ; --kk) {
diag = mbit_ - kk - 1;
if (diag==0)
fact = 1;
else
fact = (fact*j) % base_;
for (long int ii=0; ii<=kk; ii++)
pascal3D[diag+ii][j][ii] = (fact*
pascal3D[diag+ii][1][ii]) % base_;
}
}
normalizationFactor_ = (double)base_ * (double)powBase_[0][base_];
// std::cout << IntegerFormatter::toString(dimensionality_) << ", " ;
// std::cout << IntegerFormatter::toString(normalizationFactor_);
// std::cout << std::endl;
}
void FaureRsg::generateNextIntSequence() const {
// sequenceCounter_++;
Size bit = 0;
bary_[bit] = addOne_[bary_[bit]];
while (bary_[bit] == 0) {
bit++;
bary_[bit] = addOne_[bary_[bit]];
};
QL_REQUIRE(bit != mbit_,
"Error processing Faure sequence." );
long int tmp, g1, g2;
for (Size i=0; i<dimensionality_ ; i++) {
for (Size j=0; j<=bit ; j++) {
tmp = gray_[i][j];
gray_[i][j] = (pascal3D[bit][i][j] + tmp) % base_;
g1 = gray_[i][j];
g2 = base_ - 1 + g1 - tmp;
integerSequence_[i] += powBase_[j][g2];
}
}
}
}
|