1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/statistics/generalstatistics.hpp>
namespace QuantLib {
Real GeneralStatistics::weightSum() const {
Real result = 0.0;
std::vector<std::pair<Real,Real> >::const_iterator it;
for (it=samples_.begin(); it!=samples_.end(); ++it) {
result += it->second;
}
return result;
}
Real GeneralStatistics::mean() const {
Size N = samples();
QL_REQUIRE(N != 0, "empty sample set");
return expectationValue([](Real x) { return x; }).first;
}
Real GeneralStatistics::variance() const {
Size N = samples();
QL_REQUIRE(N > 1,
"sample number <=1, unsufficient");
// Subtract the mean and square. Repeat on the whole range.
// Hopefully, the whole thing will be inlined in a single loop.
Real m = mean();
Real s2 = expectationValue([=](Real x) -> Real {
Real d = x - m;
return d * d;
}).first;
return s2*N/(N-1.0);
}
Real GeneralStatistics::skewness() const {
Size N = samples();
QL_REQUIRE(N > 2,
"sample number <=2, unsufficient");
Real m = mean();
Real X = expectationValue([=](Real x) -> Real {
Real d = x - m;
return d * d * d;
}).first;
Real sigma = standardDeviation();
return (X/(sigma*sigma*sigma))*(N/(N-1.0))*(N/(N-2.0));
}
Real GeneralStatistics::kurtosis() const {
Size N = samples();
QL_REQUIRE(N > 3,
"sample number <=3, unsufficient");
Real m = mean();
Real X = expectationValue([=](Real x) -> Real {
Real d = x - m;
Real d2 = d * d;
return d2 * d2;
}).first;
Real sigma2 = variance();
Real c1 = (N/(N-1.0)) * (N/(N-2.0)) * ((N+1.0)/(N-3.0));
Real c2 = 3.0 * ((N-1.0)/(N-2.0)) * ((N-1.0)/(N-3.0));
return c1*(X/(sigma2*sigma2))-c2;
}
Real GeneralStatistics::percentile(Real percent) const {
QL_REQUIRE(percent > 0.0 && percent <= 1.0,
"percentile (" << percent << ") must be in (0.0, 1.0]");
Real sampleWeight = weightSum();
QL_REQUIRE(sampleWeight>0.0,
"empty sample set");
sort();
std::vector<std::pair<Real,Real> >::iterator k, l;
k = samples_.begin();
l = samples_.end()-1;
/* the sum of weight is non null, therefore there's
at least one sample */
Real integral = k->second, target = percent*sampleWeight;
while (integral < target && k != l) {
++k;
integral += k->second;
}
return k->first;
}
Real GeneralStatistics::topPercentile(Real percent) const {
QL_REQUIRE(percent > 0.0 && percent <= 1.0,
"percentile (" << percent << ") must be in (0.0, 1.0]");
Real sampleWeight = weightSum();
QL_REQUIRE(sampleWeight > 0.0,
"empty sample set");
sort();
std::vector<std::pair<Real,Real> >::reverse_iterator k, l;
k = samples_.rbegin();
l = samples_.rend()-1;
/* the sum of weight is non null, therefore there's
at least one sample */
Real integral = k->second, target = percent*sampleWeight;
while (integral < target && k != l) {
++k;
integral += k->second;
}
return k->first;
}
}
|