File: histogram.cpp

package info (click to toggle)
quantlib 1.29-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,032 kB
  • sloc: cpp: 389,443; makefile: 6,658; sh: 4,511; lisp: 86
file content (180 lines) | stat: -rw-r--r-- 6,325 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2007 Gang Liang

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/statistics/histogram.hpp>
#include <ql/math/statistics/incrementalstatistics.hpp>
#include <ql/math/comparison.hpp>
#include <algorithm>

namespace QuantLib {

    namespace {

        /* The discontinuous quantiles use the method (type 8) as
           recommended by Hyndman and Fan (1996). The resulting
           quantile estimates are approximately median-unbiased
           regardless of the distribution of 'samples'.

           If quantile function is called multiple times for the same
           dataset, it is recommended to pre-sort the sample vector.
        */
        Real quantile(const std::vector<Real>& samples, Real prob) {
            Size nsample = samples.size();
            QL_REQUIRE(prob >= 0.0 && prob <= 1.0,
                       "Probability has to be in [0,1].");
            QL_REQUIRE(nsample > 0, "The sample size has to be positive." );

            if (nsample == 1)
                return samples[0];

            // two special cases: close to boundaries
            const Real a = 1. / 3, b = 2*a / (nsample+a);
            if (prob < b)
                return *std::min_element(samples.begin(), samples.end());
            else if (prob > 1-b)
                return *std::max_element(samples.begin(), samples.end());

            // general situation: middle region and nsample >= 2
            Size index = static_cast<Size>(std::floor((nsample+a)*prob+a));
            std::vector<Real> sorted(index+1);
            std::partial_sort_copy(samples.begin(), samples.end(),
                                   sorted.begin(), sorted.end());

            // use "index & index+1"th elements to interpolate the quantile
            Real weight = nsample*prob + a - index;
            return (1-weight) * sorted[index-1] + weight * sorted[index];
        }

    }


    Size Histogram::bins() const {
        return bins_;
    }

    const std::vector<Real>& Histogram::breaks() const {
        return breaks_;
    }

    Histogram::Algorithm Histogram::algorithm() const {
        return algorithm_;
    }

    bool Histogram::empty() const {
        return bins_ == 0;
    }

    Size Histogram::counts(Size i) const {
        #if defined(QL_EXTRA_SAFETY_CHECKS)
        return counts_.at(i);
        #else
        return counts_[i];
        #endif
    }

    Real Histogram::frequency(Size i) const {
        #if defined(QL_EXTRA_SAFETY_CHECKS)
        return frequency_.at(i);
        #else
        return frequency_[i];
        #endif
    }

    void Histogram::calculate() {
        QL_REQUIRE(!data_.empty(), "no data given");

        Real min = *std::min_element(data_.begin(), data_.end());
        Real max = *std::max_element(data_.begin(), data_.end());

        // calculate number of bins if necessary
        if (bins_ == Null<Size>()) {
            switch (algorithm_) {
              case Sturges: {
                  bins_ = static_cast<Size>(
                           std::ceil(std::log(static_cast<Real>(data_.size()))
                                     /std::log(2.0) + 1));
                  break;
              }
              case FD: {
                  Real r1 = quantile(data_, 0.25);
                  Real r2 = quantile(data_, 0.75);
                  Real h = 2.0 * (r2-r1) * std::pow(static_cast<Real>(data_.size()), -1.0/3.0);
                  bins_ = static_cast<Size>(std::ceil((max-min)/h));
                  break;
              }
              case Scott: {
                  IncrementalStatistics summary;
                  summary.addSequence(data_.begin(), data_.end());
                  Real variance = summary.variance();
                  Real h = 3.5 * std::sqrt(variance)
                         * std::pow(static_cast<Real>(data_.size()), -1.0/3.0);
                  bins_ = static_cast<Size>(std::ceil((max-min)/h));
                  break;
              }
              case None:
                QL_FAIL("a bin-partition algorithm is required");
              default:
                QL_FAIL("unknown bin-partition algorithm");
            };
            bins_ = std::max<Size>(bins_,1);
        }

        if (breaks_.empty()) {
            // set breaks if not provided
            breaks_.resize(bins_-1);

            // ensure breaks_ evenly span over the range of data_
            // TODO: borrow the idea of pretty in R.
            Real h = (max-min)/bins_;
            for (Size i=0; i<breaks_.size(); ++i) {
                breaks_[i] = min + (i+1)*h;
            }
        } else {
            // or ensure they're sorted if given
            std::sort(breaks_.begin(), breaks_.end());
            auto end = std::unique(breaks_.begin(), breaks_.end(),
                                   static_cast<bool (*)(Real, Real)>(close_enough));
            breaks_.resize(end - breaks_.begin());
        }

        // finally, calculate counts and frequencies
        counts_.resize(bins_);
        std::fill(counts_.begin(), counts_.end(), 0);

        for (Real p : data_) {
            bool processed = false;
            for (Size i=0; i<breaks_.size(); ++i) {
                if (p < breaks_[i]) {
                    ++counts_[i];
                    processed = true;
                    break;
                }
            }
            if (!processed)
                ++counts_[bins_-1];
        }

        frequency_.resize(bins_);

        Size totalCounts = data_.size();
        for (Size i=0; i<bins_; ++i)
            frequency_[i] = static_cast<Real>(counts_[i])/totalCounts;
    }

}