1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Andreas Gaida
Copyright (C) 2008 Ralph Schreyer
Copyright (C) 2008, 2019 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/functional.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/termstructures/volatility/equityfx/localvoltermstructure.hpp>
#include <ql/methods/finitedifferences/meshers/fdmhestonvariancemesher.hpp>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/mean.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <set>
#include <algorithm>
namespace QuantLib {
namespace {
struct interpolated_volatility {
interpolated_volatility(const std::vector<Real>& pGrid,
const std::vector<Real>& vGrid)
: variance(pGrid.begin(), pGrid.end(), vGrid.begin()) {}
Real operator()(Real x) const {
return std::sqrt(variance(x, true));
}
LinearInterpolation variance;
};
}
FdmHestonVarianceMesher::FdmHestonVarianceMesher(
Size size,
const ext::shared_ptr<HestonProcess> & process,
Time maturity, Size tAvgSteps, Real epsilon,
Real mixingFactor)
: Fdm1dMesher(size) {
std::vector<Real> vGrid(size, 0.0), pGrid(size, 0.0);
const Real mixedSigma = process->sigma()*mixingFactor;
const Real df = 4*process->theta()*process->kappa()/squared(mixedSigma);
try {
std::multiset<std::pair<Real, Real> > grid;
for (Size l=1; l<=tAvgSteps; ++l) {
const Real t = (maturity*l)/tAvgSteps;
const Real ncp = 4*process->kappa()*std::exp(-process->kappa()*t)/(squared(mixedSigma)
*(1-std::exp(-process->kappa()*t)))*process->v0();
const Real k = squared(mixedSigma)
*(1-std::exp(-process->kappa()*t))/(4*process->kappa());
const Real qMin = 0.0; // v_min = 0.0;
const Real qMax = std::max(process->v0(),
k*InverseNonCentralCumulativeChiSquareDistribution(
df, ncp, 100, 1e-8)(1-epsilon));
const Real minVStep=(qMax-qMin)/(50*size);
Real ps,p = 0.0;
Real vTmp = qMin;
grid.insert(std::pair<Real, Real>(qMin, epsilon));
for (Size i=1; i < size; ++i) {
ps = (1 - epsilon - p)/(size-i);
p += ps;
const Real tmp = k*InverseNonCentralCumulativeChiSquareDistribution(
df, ncp, 100, 1e-8)(p);
const Real vx = std::max(vTmp+minVStep, tmp);
p = NonCentralCumulativeChiSquareDistribution(df, ncp)(vx/k);
vTmp=vx;
grid.insert(std::pair<Real, Real>(vx, p));
}
}
QL_REQUIRE(grid.size() == size*tAvgSteps,
"something wrong with the grid size");
const std::vector<std::pair<Real, Real> > tp(grid.begin(), grid.end());
for (Size i=0; i < size; ++i) {
const Size b = (i*tp.size())/size;
const Size e = ((i+1)*tp.size())/size;
for (Size j=b; j < e; ++j) {
vGrid[i]+=tp[j].first/(e-b);
pGrid[i]+=tp[j].second/(e-b);
}
}
}
catch (const Error&) {
// use default mesh
const Real vol = mixedSigma*
std::sqrt(process->theta()/(2*process->kappa()));
const Real mean = process->theta();
const Real upperBound = std::max(process->v0()+4*vol, mean+4*vol);
const Real lowerBound
= std::max(0.0, std::min(process->v0()-4*vol, mean-4*vol));
for (Size i=0; i < size; ++i) {
pGrid[i] = i/(size-1.0);
vGrid[i] = lowerBound + i*(upperBound-lowerBound)/(size-1.0);
}
}
Real skewHint = ((process->kappa() != 0.0)
? Real(std::max(1.0, mixedSigma/process->kappa())) : 1.0);
std::sort(pGrid.begin(), pGrid.end());
volaEstimate_ = GaussLobattoIntegral(100000, 1e-4)(
interpolated_volatility(pGrid, vGrid),
pGrid.front(), pGrid.back())*std::pow(skewHint, 1.5);
const Real v0 = process->v0();
for (Size i=1; i<vGrid.size(); ++i) {
if (vGrid[i-1] <= v0 && vGrid[i] >= v0) {
if (std::fabs(vGrid[i-1] - v0) < std::fabs(vGrid[i] - v0))
vGrid[i-1] = v0;
else
vGrid[i] = v0;
}
}
std::copy(vGrid.begin(), vGrid.end(), locations_.begin());
for (Size i=0; i < size-1; ++i) {
dminus_[i+1] = dplus_[i] = vGrid[i+1] - vGrid[i];
}
dplus_.back() = dminus_.front() = Null<Real>();
}
FdmHestonLocalVolatilityVarianceMesher::FdmHestonLocalVolatilityVarianceMesher(
Size size,
const ext::shared_ptr<HestonProcess>& process,
const ext::shared_ptr<LocalVolTermStructure>& leverageFct,
Time maturity, Size tAvgSteps, Real epsilon,
Real mixingFactor)
: Fdm1dMesher(size) {
const FdmHestonVarianceMesher mesher(
size, process, maturity, tAvgSteps, epsilon, mixingFactor);
for (Size i=0; i < size; ++i) {
dplus_[i] = mesher.dplus(i);
dminus_[i] = mesher.dminus(i);
locations_[i] = mesher.location(i);
}
volaEstimate_ = mesher.volaEstimate();
if (leverageFct != nullptr) {
typedef boost::accumulators::accumulator_set<
Real, boost::accumulators::stats<
boost::accumulators::tag::mean> >
accumulator_set;
accumulator_set acc;
const Real s0 = process->s0()->value();
acc(leverageFct->localVol(0, s0, true));
const Handle<YieldTermStructure> rTS = process->riskFreeRate();
const Handle<YieldTermStructure> qTS = process->dividendYield();
for (Size l=1; l <= tAvgSteps; ++l) {
const Real t = (maturity*l)/tAvgSteps;
const Real vol = volaEstimate_ * boost::accumulators::mean(acc);
const Real fwd = s0*qTS->discount(t)/rTS->discount(t);
const Size sAvgSteps = 50;
std::vector<Real> u(sAvgSteps), sig(sAvgSteps);
for (Size i=0; i < sAvgSteps; ++i) {
u[i] = epsilon + ((1-2*epsilon)/(sAvgSteps-1))*i;
const Real x = InverseCumulativeNormal()(u[i]);
const Real gf = x*vol*std::sqrt(t);
const Real f = fwd*std::exp(gf);
sig[i] = squared(leverageFct->localVol(t, f, true));
}
const Real leverageAvg =
GaussLobattoIntegral(10000, 1e-4)(
interpolated_volatility(u, sig), u.front(), u.back())
/ (1-2*epsilon);
acc(leverageAvg);
}
volaEstimate_ *= boost::accumulators::mean(acc);
}
}
}
|