1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Mark Joshi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_pathwise_accounting_engine_hpp
#define quantlib_pathwise_accounting_engine_hpp
#include <ql/models/marketmodels/pathwisemultiproduct.hpp>
#include <ql/models/marketmodels/pathwisediscounter.hpp>
#include <ql/math/statistics/sequencestatistics.hpp>
#include <ql/models/marketmodels/pathwisegreeks/ratepseudorootjacobian.hpp>
#include <ql/utilities/clone.hpp>
#include <ql/types.hpp>
#include <vector>
namespace QuantLib {
class LogNormalFwdRateEuler;
class MarketModel;
//! Engine collecting cash flows along a market-model simulation for doing pathwise computation of Deltas
// using Giles--Glasserman smoking adjoints method
// note only works with displaced LMM, and requires knowledge of pseudo-roots and displacements
// This is tested in MarketModelTest::testPathwiseGreeks
class PathwiseAccountingEngine
{
public:
PathwiseAccountingEngine(
ext::shared_ptr<LogNormalFwdRateEuler> evolver, // method relies heavily on LMM Euler
const Clone<MarketModelPathwiseMultiProduct>& product,
ext::shared_ptr<MarketModel>
pseudoRootStructure, // we need pseudo-roots and displacements
Real initialNumeraireValue);
void multiplePathValues(SequenceStatisticsInc& stats,
Size numberOfPaths);
private:
Real singlePathValues(std::vector<Real>& values);
ext::shared_ptr<LogNormalFwdRateEuler> evolver_;
Clone<MarketModelPathwiseMultiProduct> product_;
ext::shared_ptr<MarketModel> pseudoRootStructure_;
Real initialNumeraireValue_;
Size numberProducts_;
Size numberRates_;
Size numberCashFlowTimes_;
Size numberSteps_;
std::vector<Real> currentForwards_, lastForwards_;
bool doDeflation_;
// workspace
std::vector<Real> numerairesHeld_;
std::vector<Size> numberCashFlowsThisStep_;
std::vector<std::vector<MarketModelPathwiseMultiProduct::CashFlow> >
cashFlowsGenerated_;
std::vector<MarketModelPathwiseDiscounter> discounters_;
std::vector<Matrix> V_; // one V for each product, with components for each time step and rate
// std::vector<std::vector<std::vector<Real> > > V_; // one V for each product, with components for each time step and rate
Matrix LIBORRatios_; // dimensions are step and rate number
Matrix Discounts_; // dimensions are step and rate number, goes from 0 to n. P(t_0, t_j)
Matrix StepsDiscountsSquared_; // dimensions are step and rate number
Matrix LIBORRates_; // dimensions are step and rate number
Matrix partials_; // dimensions are factor and rate
std::vector<Real> deflatorAndDerivatives_;
std::vector<std::vector<Size> > numberCashFlowsThisIndex_;
std::vector<Matrix> totalCashFlowsThisIndex_; // need product cross times cross which sensitivity
std::vector<std::vector<Size> > cashFlowIndicesThisStep_;
};
//! Engine collecting cash flows along a market-model simulation for doing pathwise computation of Deltas and vegas
// using Giles--Glasserman smoking adjoints method
// note only works with displaced LMM,
//
// The method is intimately connected with log-normal Euler evolution
//
// We must work with discretely compounding MM account
// To compute a vega means changing the pseudo-square root at each time step
// So for each vega, we have a vector of matrices. So we need a vector of vectors of matrices to compute all the vegas.
// We do the outermost vector by time step and inner one by which vega.
// This is tested in MarketModelTest::testPathwiseVegas
class PathwiseVegasAccountingEngine
{
public:
PathwiseVegasAccountingEngine(
ext::shared_ptr<LogNormalFwdRateEuler> evolver, // method relies heavily on LMM Euler
const Clone<MarketModelPathwiseMultiProduct>& product,
ext::shared_ptr<MarketModel>
pseudoRootStructure, // we need pseudo-roots and displacements
const std::vector<std::vector<Matrix> >& VegaBumps,
Real initialNumeraireValue);
void multiplePathValues(std::vector<Real>& means,
std::vector<Real>& errors,
Size numberOfPaths);
private:
Real singlePathValues(std::vector<Real>& values);
ext::shared_ptr<LogNormalFwdRateEuler> evolver_;
Clone<MarketModelPathwiseMultiProduct> product_;
ext::shared_ptr<MarketModel> pseudoRootStructure_;
std::vector<Size> numeraires_;
Real initialNumeraireValue_;
Size numberProducts_;
Size numberRates_;
Size numberCashFlowTimes_;
Size numberSteps_;
Size numberBumps_;
std::vector<RatePseudoRootJacobian> jacobianComputers_;
bool doDeflation_;
// workspace
std::vector<Real> currentForwards_, lastForwards_;
std::vector<Real> numerairesHeld_;
std::vector<Size> numberCashFlowsThisStep_;
std::vector<std::vector<MarketModelPathwiseMultiProduct::CashFlow> >
cashFlowsGenerated_;
std::vector<MarketModelPathwiseDiscounter> discounters_;
std::vector<Matrix> V_; // one V for each product, with components for each time step and rate
Matrix LIBORRatios_; // dimensions are step and rate number
Matrix Discounts_; // dimensions are step and rate number, goes from 0 to n. P(t_0, t_j)
Matrix StepsDiscountsSquared_; // dimensions are step and rate number
std::vector<Real> stepsDiscounts_;
Matrix LIBORRates_; // dimensions are step and rate number
Matrix partials_; // dimensions are factor and rate
Matrix vegasThisPath_; // dimensions are product and which vega
std::vector<Matrix> jacobiansThisPaths_; // dimensions are step, rate and factor
std::vector<Real> deflatorAndDerivatives_;
std::vector<Real> fullDerivatives_;
std::vector<std::vector<Size> > numberCashFlowsThisIndex_;
std::vector<Matrix> totalCashFlowsThisIndex_; // need product cross times cross which sensitivity
std::vector<std::vector<Size> > cashFlowIndicesThisStep_;
};
//! Engine collecting cash flows along a market-model simulation for doing pathwise computation of Deltas and vegas
// using Giles--Glasserman smoking adjoints method
// note only works with displaced LMM,
//
// The method is intimately connected with log-normal Euler evolution
//
// We must work with discretely compounding MM account
// To compute a vega means changing the pseudo-square root at each time step
// So for each vega, we have a vector of matrices. So we need a vector of vectors of matrices to compute all the vegas.
// We do the outermost vector by time step and inner one by which vega.
// This implementation is different in that all the linear combinations by the bumps are done as late as possible,
// whereas PathwiseVegasAccountingEngine does them as early as possible.
// This is tested in MarketModelTest::testPathwiseVegas
class PathwiseVegasOuterAccountingEngine
{
public:
PathwiseVegasOuterAccountingEngine(
ext::shared_ptr<LogNormalFwdRateEuler> evolver, // method relies heavily on LMM Euler
const Clone<MarketModelPathwiseMultiProduct>& product,
ext::shared_ptr<MarketModel>
pseudoRootStructure, // we need pseudo-roots and displacements
const std::vector<std::vector<Matrix> >& VegaBumps,
Real initialNumeraireValue);
//! Use to get vegas with respect to VegaBumps
void multiplePathValues(std::vector<Real>& means,
std::vector<Real>& errors,
Size numberOfPaths);
//! Use to get vegas with respect to pseudo-root-elements
void multiplePathValuesElementary(std::vector<Real>& means,
std::vector<Real>& errors,
Size numberOfPaths);
private:
Real singlePathValues(std::vector<Real>& values);
ext::shared_ptr<LogNormalFwdRateEuler> evolver_;
Clone<MarketModelPathwiseMultiProduct> product_;
ext::shared_ptr<MarketModel> pseudoRootStructure_;
std::vector<std::vector<Matrix> > vegaBumps_;
std::vector<Size> numeraires_;
Real initialNumeraireValue_;
Size numberProducts_;
Size numberRates_;
Size numberCashFlowTimes_;
Size numberSteps_;
Size factors_;
Size numberBumps_;
Size numberElementaryVegas_;
std::vector<RatePseudoRootJacobianAllElements> jacobianComputers_;
bool doDeflation_;
// workspace
std::vector<Real> currentForwards_, lastForwards_;
std::vector<Real> numerairesHeld_;
std::vector<Size> numberCashFlowsThisStep_;
std::vector<std::vector<MarketModelPathwiseMultiProduct::CashFlow> >
cashFlowsGenerated_;
std::vector<MarketModelPathwiseDiscounter> discounters_;
std::vector<Matrix> V_; // one V for each product, with components for each time step and rate
Matrix LIBORRatios_; // dimensions are step and rate number
Matrix Discounts_; // dimensions are step and rate number, goes from 0 to n. P(t_0, t_j)
Matrix StepsDiscountsSquared_; // dimensions are step and rate number
std::vector<Real> stepsDiscounts_;
Matrix LIBORRates_; // dimensions are step and rate number
Matrix partials_; // dimensions are factor and rate
std::vector<std::vector<Matrix> > elementary_vegas_ThisPath_; // dimensions are product, step, rate and factor
std::vector<std::vector<Matrix> > jacobiansThisPaths_; // dimensions are step, rate, rate and factor
std::vector<Real> deflatorAndDerivatives_;
std::vector<Real> fullDerivatives_;
std::vector<std::vector<Size> > numberCashFlowsThisIndex_;
std::vector<Matrix> totalCashFlowsThisIndex_; // need product cross times cross which sensitivity
std::vector<std::vector<Size> > cashFlowIndicesThisStep_;
/*
// experimental
std::vector<std::vector<Real> > gaussians_;
int distinguishedFactor_;
int distinguishedRate_;
int distinguishedStep_;
*/
};
}
#endif
|