1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2019 SoftSolutions! S.r.l.
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file globalbootstrap.hpp
\brief global bootstrap, with additional restrictions
\ingroup termstructures
*/
#ifndef quantlib_global_bootstrap_hpp
#define quantlib_global_bootstrap_hpp
#include <ql/functional.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/termstructures/bootstraperror.hpp>
#include <ql/termstructures/bootstraphelper.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <utility>
namespace QuantLib {
//! Global boostrapper, with additional restrictions
template <class Curve> class GlobalBootstrap {
typedef typename Curve::traits_type Traits; // ZeroYield, Discount, ForwardRate
typedef typename Curve::interpolator_type Interpolator; // Linear, LogLinear, ...
public:
GlobalBootstrap(Real accuracy = Null<Real>());
/*! The set of (alive) additional dates is added to the interpolation grid. The set of additional dates must only
depend on the current global evaluation date. The additionalErrors functor must yield at least as many values
such that
number of (usual, alive) rate helpers + number of (alive) additional values >= number of data points - 1
(note that the data points contain t=0). These values are treated as additional error terms in the optimization,
the usual rate helpers return marketQuote - impliedQuote here. All error terms are equally weighted in the
optimisation.
The additional helpers are treated like the usual rate helpers, but no standard pillar dates are added for them.
WARNING: This class is known to work with Traits Discount, ZeroYield, Forward (i.e. the usual traits for IR curves
in QL), it might fail for other traits - check the usage of Traits::updateGuess(), Traits::guess(),
Traits::minValueAfter(), Traits::maxValueAfter() in this class against them.
*/
GlobalBootstrap(std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
ext::function<std::vector<Date>()> additionalDates,
ext::function<Array()> additionalErrors,
Real accuracy = Null<Real>());
void setup(Curve *ts);
void calculate() const;
private:
void initialize() const;
Curve *ts_;
Real accuracy_;
mutable std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers_;
ext::function<std::vector<Date>()> additionalDates_;
ext::function<Array()> additionalErrors_;
mutable bool initialized_ = false, validCurve_ = false;
mutable Size firstHelper_, numberHelpers_;
mutable Size firstAdditionalHelper_, numberAdditionalHelpers_;
mutable Size firstAdditionalDate_, numberAdditionalDates_;
mutable std::vector<Real> lowerBounds_, upperBounds_;
};
// template definitions
template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(Real accuracy) : ts_(0), accuracy_(accuracy) {}
template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
ext::function<std::vector<Date>()> additionalDates,
ext::function<Array()> additionalErrors,
Real accuracy)
: ts_(nullptr), accuracy_(accuracy), additionalHelpers_(std::move(additionalHelpers)),
additionalDates_(std::move(additionalDates)), additionalErrors_(std::move(additionalErrors)) {}
template <class Curve> void GlobalBootstrap<Curve>::setup(Curve *ts) {
ts_ = ts;
for (Size j = 0; j < ts_->instruments_.size(); ++j)
ts_->registerWith(ts_->instruments_[j]);
for (Size j = 0; j < additionalHelpers_.size(); ++j)
ts_->registerWith(additionalHelpers_[j]);
// do not initialize yet: instruments could be invalid here
// but valid later when bootstrapping is actually required
}
template <class Curve> void GlobalBootstrap<Curve>::initialize() const {
// ensure helpers are sorted
std::sort(ts_->instruments_.begin(), ts_->instruments_.end(), detail::BootstrapHelperSorter());
std::sort(additionalHelpers_.begin(), additionalHelpers_.end(), detail::BootstrapHelperSorter());
// skip expired helpers
Date firstDate = Traits::initialDate(ts_);
firstHelper_ = 0;
if (!ts_->instruments_.empty()) {
while (firstHelper_ < ts_->instruments_.size() && ts_->instruments_[firstHelper_]->pillarDate() <= firstDate)
++firstHelper_;
}
numberHelpers_ = ts_->instruments_.size() - firstHelper_;
// skip expired additional helpers
firstAdditionalHelper_ = 0;
if (!additionalHelpers_.empty()) {
while (firstAdditionalHelper_ < additionalHelpers_.size() &&
additionalHelpers_[firstAdditionalHelper_]->pillarDate() <= firstDate)
++firstAdditionalHelper_;
}
numberAdditionalHelpers_ = additionalHelpers_.size() - firstAdditionalHelper_;
// skip expired additional dates
std::vector<Date> additionalDates;
if (!(additionalDates_ == QL_NULL_FUNCTION))
additionalDates = additionalDates_();
firstAdditionalDate_ = 0;
if (!additionalDates.empty()) {
while (firstAdditionalDate_ < additionalDates.size() && additionalDates[firstAdditionalDate_] <= firstDate)
++firstAdditionalDate_;
}
numberAdditionalDates_ = additionalDates.size() - firstAdditionalDate_;
QL_REQUIRE(numberHelpers_ + numberAdditionalDates_ >= Interpolator::requiredPoints - 1,
"not enough alive instruments (" << numberHelpers_ << ") + additional dates (" << numberAdditionalDates_
<< ") = " << numberHelpers_ + numberAdditionalDates_ << " provided, "
<< Interpolator::requiredPoints - 1 << " required");
// calculate dates and times
std::vector<Date> &dates = ts_->dates_;
std::vector<Time> × = ts_->times_;
// first populate the dates vector and make sure they are sorted and there are no duplicates
dates.clear();
dates.push_back(firstDate);
for (Size j = 0; j < numberHelpers_; ++j)
dates.push_back(ts_->instruments_[firstHelper_ + j]->pillarDate());
for (Size j = firstAdditionalDate_; j < numberAdditionalDates_; ++j)
dates.push_back(additionalDates[firstAdditionalDate_ + j]);
std::sort(dates.begin(), dates.end());
auto it = std::unique(dates.begin(), dates.end());
QL_REQUIRE(it == dates.end(), "duplicate dates among alive instruments and additional dates");
// build times vector
times.clear();
for (auto& date : dates)
times.push_back(ts_->timeFromReference(date));
// determine maxDate
Date maxDate = firstDate;
for (Size j = 0; j < numberHelpers_; ++j) {
maxDate = std::max(ts_->instruments_[firstHelper_ + j]->latestRelevantDate(), maxDate);
}
for (Size j = 0; j < numberAdditionalDates_; ++j) {
maxDate = std::max(additionalDates[firstAdditionalDate_ + j], maxDate);
}
ts_->maxDate_ = maxDate;
// set initial guess only if the current curve cannot be used as guess
if (!validCurve_ || ts_->data_.size() != dates.size()) {
// ts_->data_[0] is the only relevant item,
// but reasonable numbers might be needed for the whole data vector
// because, e.g., of interpolation's early checks
ts_->data_ = std::vector<Real>(dates.size(), Traits::initialValue(ts_));
}
initialized_ = true;
}
template <class Curve> void GlobalBootstrap<Curve>::calculate() const {
// we might have to call initialize even if the curve is initialized
// and not moving, just because helpers might be date relative and change
// with evaluation date change.
// anyway it makes little sense to use date relative helpers with a
// non-moving curve if the evaluation date changes
if (!initialized_ || ts_->moving_)
initialize();
// setup helpers
for (Size j = 0; j < numberHelpers_; ++j) {
const ext::shared_ptr<typename Traits::helper> &helper = ts_->instruments_[firstHelper_ + j];
// check for valid quote
QL_REQUIRE(helper->quote()->isValid(), io::ordinal(j + 1)
<< " instrument (maturity: " << helper->maturityDate()
<< ", pillar: " << helper->pillarDate() << ") has an invalid quote");
// don't try this at home!
// This call creates helpers, and removes "const".
// There is a significant interaction with observability.
helper->setTermStructure(const_cast<Curve *>(ts_));
}
// setup additional helpers
for (Size j = 0; j < numberAdditionalHelpers_; ++j) {
const ext::shared_ptr<typename Traits::helper> &helper = additionalHelpers_[firstAdditionalHelper_ + j];
QL_REQUIRE(helper->quote()->isValid(), io::ordinal(j + 1)
<< " additional instrument (maturity: " << helper->maturityDate()
<< ") has an invalid quote");
helper->setTermStructure(const_cast<Curve *>(ts_));
}
Real accuracy = accuracy_ != Null<Real>() ? accuracy_ : ts_->accuracy_;
// setup optimizer and EndCriteria
Real optEps = accuracy;
LevenbergMarquardt optimizer(optEps, optEps, optEps); // FIXME hardcoded tolerances
EndCriteria ec(1000, 10, optEps, optEps, optEps); // FIXME hardcoded values here as well
// setup interpolation
if (!validCurve_) {
ts_->interpolation_ =
ts_->interpolator_.interpolate(ts_->times_.begin(), ts_->times_.end(), ts_->data_.begin());
}
// determine bounds, we use an unconstrained optimisation transforming the free variables to [lowerBound,upperBound]
std::vector<Real> lowerBounds(numberHelpers_ + numberAdditionalDates_),
upperBounds(numberHelpers_ + numberAdditionalDates_);
for (Size i = 0; i < numberHelpers_ + numberAdditionalDates_; ++i) {
// just pass zero as the first alive helper, it's not used in the standard QL traits anyway
lowerBounds[i] = Traits::minValueAfter(i + 1, ts_, validCurve_, 0);
upperBounds[i] = Traits::maxValueAfter(i + 1, ts_, validCurve_, 0);
}
// setup cost function
class TargetFunction : public CostFunction {
public:
TargetFunction(const Size firstHelper,
const Size numberHelpers,
ext::function<Array()> additionalErrors,
Curve* ts,
std::vector<Real> lowerBounds,
std::vector<Real> upperBounds)
: firstHelper_(firstHelper), numberHelpers_(numberHelpers),
additionalErrors_(std::move(additionalErrors)), ts_(ts),
lowerBounds_(std::move(lowerBounds)), upperBounds_(std::move(upperBounds)) {}
Real transformDirect(const Real x, const Size i) const {
return (std::atan(x) + M_PI_2) / M_PI * (upperBounds_[i] - lowerBounds_[i]) + lowerBounds_[i];
}
Real transformInverse(const Real y, const Size i) const {
return std::tan((y - lowerBounds_[i]) * M_PI / (upperBounds_[i] - lowerBounds_[i]) - M_PI_2);
}
Real value(const Array& x) const override {
Array v = values(x);
std::transform(v.begin(), v.end(), v.begin(), [](Real x) -> Real { return x*x; });
return std::sqrt(std::accumulate(v.begin(), v.end(), Real(0.0)) / static_cast<Real>(v.size()));
}
Array values(const Array& x) const override {
for (Size i = 0; i < x.size(); ++i) {
Traits::updateGuess(ts_->data_, transformDirect(x[i], i), i + 1);
}
ts_->interpolation_.update();
std::vector<Real> result(numberHelpers_);
for (Size i = 0; i < numberHelpers_; ++i) {
result[i] = ts_->instruments_[firstHelper_ + i]->quote()->value() -
ts_->instruments_[firstHelper_ + i]->impliedQuote();
}
if (!(additionalErrors_ == QL_NULL_FUNCTION)) {
Array tmp = additionalErrors_();
result.resize(numberHelpers_ + tmp.size());
for (Size i = 0; i < tmp.size(); ++i) {
result[numberHelpers_ + i] = tmp[i];
}
}
return Array(result.begin(), result.end());
}
private:
Size firstHelper_, numberHelpers_;
ext::function<Array()> additionalErrors_;
Curve *ts_;
const std::vector<Real> lowerBounds_, upperBounds_;
};
TargetFunction cost(firstHelper_, numberHelpers_, additionalErrors_, ts_, lowerBounds, upperBounds);
// setup guess
Array guess(numberHelpers_ + numberAdditionalDates_);
for (Size i = 0; i < guess.size(); ++i) {
// just pass zero as the first alive helper, it's not used in the standard QL traits anyway
guess[i] = cost.transformInverse(Traits::guess(i + 1, ts_, validCurve_, 0), i);
}
// setup problem
NoConstraint noConstraint;
Problem problem(cost, noConstraint, guess);
// run optimization
optimizer.minimize(problem, ec);
// evaluate target function on best value found to ensure that data_ contains the optimal value
Real finalTargetError = cost.value(problem.currentValue());
// check final error
QL_REQUIRE(finalTargetError <= accuracy,
"global bootstrap failed, error is " << finalTargetError << ", accuracy is " << accuracy);
// set valid flag
validCurve_ = true;
}
} // namespace QuantLib
#endif
|