File: seasonality.cpp

package info (click to toggle)
quantlib 1.29-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 46,032 kB
  • sloc: cpp: 389,443; makefile: 6,658; sh: 4,511; lisp: 86
file content (276 lines) | stat: -rw-r--r-- 11,217 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Piero Del Boca
 Copyright (C) 2009 Chris Kenyon
 Copyright (C) 2015 Bernd Lewerenz

This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/

QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license.  You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.  See the license for more details.
*/


#include <ql/termstructures/inflation/seasonality.hpp>
#include <ql/termstructures/inflationtermstructure.hpp>
#include <ql/errors.hpp>

namespace QuantLib {

    bool Seasonality::isConsistent(const InflationTermStructure&) const {
        return true;
    }


    //Multiplicative Seasonality on price = on CPI/RPI/HICP/etc

    void MultiplicativePriceSeasonality::validate() const
    {
        switch (this->frequency()) {
            case Semiannual:        //2
            case EveryFourthMonth:  //3
            case Quarterly:         //4
            case Bimonthly:         //6
            case Monthly:           //12
            case Biweekly:          // etc.
            case Weekly:
            case Daily:
                QL_REQUIRE(!this->seasonalityFactors().empty(), "no seasonality factors given");
                QL_REQUIRE( (this->seasonalityFactors().size() %
                             this->frequency()) == 0,
                           "For frequency " << this->frequency()
                           << " require multiple of " << ((int)this->frequency()) << " factors "
                           << this->seasonalityFactors().size() << " were given.");
            break;
            default:
                QL_FAIL("bad frequency specified: " << this->frequency()
                        << ", only semi-annual through daily permitted.");
            break;
        }
    }


    bool MultiplicativePriceSeasonality::isConsistent(const InflationTermStructure& iTS) const
    {
        // If multi-year is the specification consistent with the term structure start date?
        // We do NOT test daily seasonality because this will, in general, never be consistent
        // given weekends, holidays, leap years, etc.
        if(this->frequency() == Daily) return true;
        if(Size(this->frequency()) == seasonalityFactors().size()) return true;

        // how many years do you need to test?
        Size nTest = seasonalityFactors().size() / this->frequency();
        // ... relative to the start of the inflation curve
        std::pair<Date,Date> lim = inflationPeriod(iTS.baseDate(), iTS.frequency());
        Date curveBaseDate = lim.second;
        Real factorBase = this->seasonalityFactor(curveBaseDate);

        Real eps = 0.00001;
        for (Size i = 1; i < nTest; i++) {
            Real factorAt = this->seasonalityFactor(curveBaseDate+Period(i,Years));
            QL_REQUIRE(std::fabs(factorAt-factorBase)<eps,"seasonality is inconsistent with inflation term structure, factors "
                       << factorBase << " and later factor " << factorAt << ", " << i << " years later from inflation curve "
                       <<" with base date at " << curveBaseDate);
        }

        return true;
    }


    MultiplicativePriceSeasonality::MultiplicativePriceSeasonality(const Date& seasonalityBaseDate, const Frequency frequency,
                                                                   const std::vector<Rate>& seasonalityFactors)
    {
        set(seasonalityBaseDate, frequency, seasonalityFactors);
    }

    void MultiplicativePriceSeasonality::set(const Date& seasonalityBaseDate, const Frequency frequency,
                                             const std::vector<Rate>& seasonalityFactors)
    {
        frequency_ = frequency;
        seasonalityFactors_ = std::vector<Rate>(seasonalityFactors.size());
        for(Size i=0; i<seasonalityFactors.size(); i++) {
            seasonalityFactors_[i] = seasonalityFactors[i];
        }
        seasonalityBaseDate_ = seasonalityBaseDate;
        validate();
    }

    Date MultiplicativePriceSeasonality::seasonalityBaseDate() const {
        return seasonalityBaseDate_;
    }

    Frequency MultiplicativePriceSeasonality::frequency() const {
        return frequency_;
    }

    std::vector<Rate> MultiplicativePriceSeasonality::seasonalityFactors() const {
        return seasonalityFactors_;
    }


    Rate MultiplicativePriceSeasonality::correctZeroRate(const Date &d,
                                                         const Rate r,
                                                         const InflationTermStructure& iTS) const {
        // Mimic the logic in ZeroInflationIndex::forecastFixing for choosing the
        // curveBaseDate and effective fixing date. This means that we should retrieve
        // the input seasonality adjustments when we look at I_{SA}(t) / I_{NSA}(t).
        Date curveBaseDate = iTS.baseDate();
        Date effectiveFixingDate = inflationPeriod(d, iTS.frequency()).first;
        
        return seasonalityCorrection(r, effectiveFixingDate, iTS.dayCounter(), curveBaseDate, true);
    }


    Rate MultiplicativePriceSeasonality::correctYoYRate(const Date &d,
                                                        const Rate r,
                                                        const InflationTermStructure& iTS) const {
        std::pair<Date,Date> lim = inflationPeriod(iTS.baseDate(), iTS.frequency());
        Date curveBaseDate = lim.second;
        return seasonalityCorrection(r, d, iTS.dayCounter(), curveBaseDate, false);
    }


    Real MultiplicativePriceSeasonality::seasonalityFactor(const Date &to) const {

        Date from = seasonalityBaseDate();
        Frequency factorFrequency = frequency();
        Size nFactors = seasonalityFactors().size();
        Period factorPeriod(factorFrequency);
        Size which = 0;
        if (from==to) {
            which = 0;
        } else {
            // days, weeks, months, years are the only time unit possibilities
            Integer diffDays = std::abs(to - from);  // in days
            Integer dir = 1;
            if(from > to)dir = -1;
            Integer diff;
            if (factorPeriod.units() == Days) {
                diff = dir*diffDays;
            } else if (factorPeriod.units() == Weeks) {
                diff = dir * (diffDays / 7);
            } else if (factorPeriod.units() == Months) {
                std::pair<Date,Date> lim = inflationPeriod(to, factorFrequency);
                diff = diffDays / (31*factorPeriod.length());
                Date go = from + dir*diff*factorPeriod;
                while ( !(lim.first <= go && go <= lim.second) ) {
                    go += dir*factorPeriod;
                    diff++;
                }
                diff=dir*diff;
            } else if (factorPeriod.units() == Years) {
                QL_FAIL("seasonality period time unit is not allowed to be : " << factorPeriod.units());
            } else {
                QL_FAIL("Unknown time unit: " << factorPeriod.units());
            }
            // now adjust to the available number of factors, direction dependent

            if (dir==1) {
                which = diff % nFactors;
            } else {
                which = (nFactors - (-diff % nFactors)) % nFactors;
            }
        }

        return seasonalityFactors()[which];
    }


    Rate MultiplicativePriceSeasonality::seasonalityCorrection(Rate rate,
                                                               const Date& atDate,
                                                               const DayCounter& dc,
                                                               const Date& curveBaseDate,
                                                               const bool isZeroRate) const {
        // need _two_ corrections in order to get: seasonality = factor[atDate-seasonalityBase] / factor[reference-seasonalityBase]
        // i.e. for ZERO inflation rates you have the true fixing at the curve base so this factor must be normalized to one
        //      for YoY inflation rates your reference point is the year before

        Real factorAt = this->seasonalityFactor(atDate);

        //Getting seasonality correction for either ZC or YoY
        Rate f;
        if (isZeroRate) {
            Rate factorBase = this->seasonalityFactor(curveBaseDate);
            Real seasonalityAt = factorAt / factorBase;
            std::pair<Date,Date> p = inflationPeriod(atDate,frequency());
            Time timeFromCurveBase = dc.yearFraction(curveBaseDate, p.first);
            f = std::pow(seasonalityAt, 1/timeFromCurveBase);
        }
        else {
            Rate factor1Ybefore = this->seasonalityFactor(atDate - Period(1,Years));
            f = factorAt / factor1Ybefore;
        }

        return (rate + 1)*f - 1;
    }


    Real KerkhofSeasonality::seasonalityFactor(const Date &to) const {

        Integer dir = 1;
        Date from = seasonalityBaseDate();
        Size fromMonth = from.month();
        Size toMonth = to.month();

        Period factorPeriod(frequency());

        if (toMonth < fromMonth)
        {
            Size dummy = fromMonth;
            fromMonth = toMonth;
            toMonth = dummy;
            dir = 0; // We calculate invers Factor in loop
        }

        QL_REQUIRE(seasonalityFactors().size() == 12 &&
                   factorPeriod.units() == Months,
                   "12 monthly seasonal factors needed for Kerkhof Seasonality:"
                   << " got " << seasonalityFactors().size());

        Real seasonalCorrection = 1.0;
        for (Size i = fromMonth ; i<toMonth; i++)
        {
            seasonalCorrection *= seasonalityFactors()[i];

        }

        if (dir == 0) // invers Factor required
        {
            seasonalCorrection = 1/seasonalCorrection;
        }

        return seasonalCorrection;
    }

    Rate KerkhofSeasonality::seasonalityCorrection(Rate rate,
                                                   const Date& atDate,
                                                   const DayCounter& dc,
                                                   const Date& curveBaseDate,
                                                   const bool isZeroRate) const {

        Real indexFactor = this->seasonalityFactor(atDate);

        // Getting seasonality correction
        Rate f;
        if (isZeroRate) {
            std::pair<Date,Date> lim = inflationPeriod(curveBaseDate, Monthly);
            Time timeFromCurveBase = dc.yearFraction(lim.first, atDate);
            f = std::pow(indexFactor, 1/timeFromCurveBase);
        }
        else {
            QL_FAIL("Seasonal Kerkhof model is not defined on YoY rates");
        }

        return (rate + 1)*f - 1;
    }

}