1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008, 2011, 2015 Ferdinando Ametrano
Copyright (C) 2007 Chris Kenyon
Copyright (C) 2007 StatPro Italia srl
Copyright (C) 2015 Paolo Mazzocchi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file iterativebootstrap.hpp
\brief universal piecewise-term-structure boostrapper.
*/
#ifndef quantlib_iterative_bootstrap_hpp
#define quantlib_iterative_bootstrap_hpp
#include <ql/termstructures/bootstraphelper.hpp>
#include <ql/termstructures/bootstraperror.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/solvers1d/finitedifferencenewtonsafe.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/utilities/dataformatters.hpp>
namespace QuantLib {
namespace detail {
/*! If \c dontThrow is \c true in IterativeBootstrap and on a given pillar the bootstrap fails when
searching for a helper root between \c xMin and \c xMax, we use this function to return the value that
gives the minimum absolute helper error in the interval between \c xMin and \c xMax inclusive.
*/
template <class Curve>
Real dontThrowFallback(const BootstrapError<Curve>& error,
Real xMin, Real xMax, Size steps) {
QL_REQUIRE(xMin < xMax, "Expected xMin to be less than xMax");
// Set the initial value of the result to xMin and store the absolute bootstrap error at xMin
Real result = xMin;
Real absError = std::abs(error(xMin));
Real minError = absError;
// Step out to xMax
Real stepSize = (xMax - xMin) / steps;
for (Size i = 0; i < steps; i++) {
// Get absolute bootstrap error at updated x value
xMin += stepSize;
absError = std::abs(error(xMin));
// If this absolute bootstrap error is less than the minimum, update result and minError
if (absError < minError) {
result = xMin;
minError = absError;
}
}
return result;
}
}
//! Universal piecewise-term-structure boostrapper.
template <class Curve>
class IterativeBootstrap {
typedef typename Curve::traits_type Traits;
typedef typename Curve::interpolator_type Interpolator;
public:
/*! Constructor
\param accuracy Accuracy for the bootstrap stopping criterion. If it is set to
\c Null<Real>(), its value is taken from the termstructure's accuracy.
\param minValue Allow to override the initial minimum value coming from traits.
\param maxValue Allow to override the initial maximum value coming from traits.
\param maxAttempts Number of attempts on each iteration. A number greater than 1 implies retries.
\param maxFactor Factor for max value retry on each iteration if there is a failure.
\param minFactor Factor for min value retry on each iteration if there is a failure.
\param dontThrow If set to \c true, the bootstrap doesn't throw and returns a <em>fall back</em>
result.
\param dontThrowSteps If \p dontThrow is \c true, this gives the number of steps to use when searching
for a fallback curve pillar value that gives the minimum bootstrap helper error.
*/
IterativeBootstrap(Real accuracy = Null<Real>(),
Real minValue = Null<Real>(),
Real maxValue = Null<Real>(),
Size maxAttempts = 1,
Real maxFactor = 2.0,
Real minFactor = 2.0,
bool dontThrow = false,
Size dontThrowSteps = 10);
void setup(Curve* ts);
void calculate() const;
private:
void initialize() const;
Real accuracy_;
Real minValue_, maxValue_;
Size maxAttempts_;
Real maxFactor_;
Real minFactor_;
bool dontThrow_;
Size dontThrowSteps_;
Curve* ts_;
Size n_;
Brent firstSolver_;
FiniteDifferenceNewtonSafe solver_;
mutable bool initialized_ = false, validCurve_ = false, loopRequired_;
mutable Size firstAliveHelper_, alive_;
mutable std::vector<Real> previousData_;
mutable std::vector<ext::shared_ptr<BootstrapError<Curve> > > errors_;
};
// template definitions
template <class Curve>
IterativeBootstrap<Curve>::IterativeBootstrap(Real accuracy,
Real minValue,
Real maxValue,
Size maxAttempts,
Real maxFactor,
Real minFactor,
bool dontThrow,
Size dontThrowSteps)
: accuracy_(accuracy), minValue_(minValue), maxValue_(maxValue), maxAttempts_(maxAttempts),
maxFactor_(maxFactor), minFactor_(minFactor), dontThrow_(dontThrow),
dontThrowSteps_(dontThrowSteps), ts_(nullptr), loopRequired_(Interpolator::global) {
QL_REQUIRE(maxFactor_ >= 1.0, "Expected that maxFactor would be at least 1.0 but got " << maxFactor_);
QL_REQUIRE(minFactor_ >= 1.0, "Expected that minFactor would be at least 1.0 but got " << minFactor_);
}
template <class Curve>
void IterativeBootstrap<Curve>::setup(Curve* ts) {
ts_ = ts;
n_ = ts_->instruments_.size();
QL_REQUIRE(n_ > 0, "no bootstrap helpers given");
for (Size j=0; j<n_; ++j)
ts_->registerWith(ts_->instruments_[j]);
// do not initialize yet: instruments could be invalid here
// but valid later when bootstrapping is actually required
}
template <class Curve>
void IterativeBootstrap<Curve>::initialize() const {
// ensure helpers are sorted
std::sort(ts_->instruments_.begin(), ts_->instruments_.end(),
detail::BootstrapHelperSorter());
// skip expired helpers
Date firstDate = Traits::initialDate(ts_);
QL_REQUIRE(ts_->instruments_[n_-1]->pillarDate()>firstDate,
"all instruments expired");
firstAliveHelper_ = 0;
while (ts_->instruments_[firstAliveHelper_]->pillarDate() <= firstDate)
++firstAliveHelper_;
alive_ = n_-firstAliveHelper_;
Size nodes = alive_+1;
QL_REQUIRE(nodes >= Interpolator::requiredPoints,
"not enough alive instruments: " << alive_ <<
" provided, " << Interpolator::requiredPoints-1 <<
" required");
// calculate dates and times, create errors_
std::vector<Date>& dates = ts_->dates_;
std::vector<Time>& times = ts_->times_;
dates.resize(alive_+1);
times.resize(alive_+1);
errors_.resize(alive_+1);
dates[0] = firstDate;
times[0] = ts_->timeFromReference(dates[0]);
Date latestRelevantDate, maxDate = firstDate;
// pillar counter: i
// helper counter: j
for (Size i=1, j=firstAliveHelper_; j<n_; ++i, ++j) {
const ext::shared_ptr<typename Traits::helper>& helper =
ts_->instruments_[j];
dates[i] = helper->pillarDate();
times[i] = ts_->timeFromReference(dates[i]);
// check for duplicated pillars
QL_REQUIRE(dates[i-1]!=dates[i],
"more than one instrument with pillar " << dates[i]);
latestRelevantDate = helper->latestRelevantDate();
// check that the helper is really extending the curve, i.e. that
// pillar-sorted helpers are also sorted by latestRelevantDate
QL_REQUIRE(latestRelevantDate > maxDate,
io::ordinal(j+1) << " instrument (pillar: " <<
dates[i] << ") has latestRelevantDate (" <<
latestRelevantDate << ") before or equal to "
"previous instrument's latestRelevantDate (" <<
maxDate << ")");
maxDate = latestRelevantDate;
// when a pillar date is different from the last relevant date the
// convergence loop is required even if the Interpolator is local
if (dates[i] != latestRelevantDate)
loopRequired_ = true;
errors_[i] = ext::shared_ptr<BootstrapError<Curve> >(new
BootstrapError<Curve>(ts_, helper, i));
}
ts_->maxDate_ = maxDate;
// set initial guess only if the current curve cannot be used as guess
if (!validCurve_ || ts_->data_.size()!=alive_+1) {
// ts_->data_[0] is the only relevant item,
// but reasonable numbers might be needed for the whole data vector
// because, e.g., of interpolation's early checks
ts_->data_ = std::vector<Real>(alive_+1, Traits::initialValue(ts_));
previousData_.resize(alive_+1);
validCurve_ = false;
}
initialized_ = true;
}
template <class Curve>
void IterativeBootstrap<Curve>::calculate() const {
// we might have to call initialize even if the curve is initialized
// and not moving, just because helpers might be date relative and change
// with evaluation date change.
// anyway it makes little sense to use date relative helpers with a
// non-moving curve if the evaluation date changes
if (!initialized_ || ts_->moving_)
initialize();
// setup helpers
for (Size j=firstAliveHelper_; j<n_; ++j) {
const ext::shared_ptr<typename Traits::helper>& helper =
ts_->instruments_[j];
// check for valid quote
QL_REQUIRE(helper->quote()->isValid(),
io::ordinal(j + 1) << " instrument (maturity: " <<
helper->maturityDate() << ", pillar: " <<
helper->pillarDate() << ") has an invalid quote");
// don't try this at home!
// This call creates helpers, and removes "const".
// There is a significant interaction with observability.
helper->setTermStructure(const_cast<Curve*>(ts_));
}
const std::vector<Time>& times = ts_->times_;
const std::vector<Real>& data = ts_->data_;
Real accuracy = accuracy_ != Null<Real>() ? accuracy_ : ts_->accuracy_;
Size maxIterations = Traits::maxIterations()-1;
// there might be a valid curve state to use as guess
bool validData = validCurve_;
for (Size iteration=0; ; ++iteration) {
previousData_ = ts_->data_;
// Store min value and max value at each pillar so that we can expand search if necessary.
std::vector<Real> minValues(alive_+1, Null<Real>());
std::vector<Real> maxValues(alive_+1, Null<Real>());
std::vector<Size> attempts(alive_+1, 1);
for (Size i=1; i<=alive_; ++i) { // pillar loop
// shorter aliases for readability and to avoid duplication
Real& min = minValues[i];
Real& max = maxValues[i];
// bracket root and calculate guess
if (min == Null<Real>()) {
// First attempt; we take min and max either from
// explicit constructor parameter or from traits
min = (minValue_ != Null<Real>() ? minValue_ :
Traits::minValueAfter(i, ts_, validData, firstAliveHelper_));
max = (maxValue_ != Null<Real>() ? maxValue_ :
Traits::maxValueAfter(i, ts_, validData, firstAliveHelper_));
} else {
// Extending a previous attempt. A negative min
// is enlarged; a positive one is shrunk towards 0.
min = (min < 0.0 ? Real(min * minFactor_) : Real(min / minFactor_));
// The opposite holds for the max.
max = (max > 0.0 ? Real(max * maxFactor_) : Real(max / maxFactor_));
}
Real guess = Traits::guess(i, ts_, validData, firstAliveHelper_);
// adjust guess if needed
if (guess >= max)
guess = max - (max - min) / 5.0;
else if (guess <= min)
guess = min + (max - min) / 5.0;
// extend interpolation if needed
if (!validData) {
try { // extend interpolation a point at a time
// including the pillar to be boostrapped
ts_->interpolation_ = ts_->interpolator_.interpolate(
times.begin(), times.begin()+i+1, data.begin());
} catch (...) {
if (!Interpolator::global)
throw; // no chance to fix it in a later iteration
// otherwise use Linear while the target
// interpolation is not usable yet
ts_->interpolation_ = Linear().interpolate(
times.begin(), times.begin()+i+1, data.begin());
}
ts_->interpolation_.update();
}
try {
if (validData)
solver_.solve(*errors_[i], accuracy, guess, min, max);
else
firstSolver_.solve(*errors_[i], accuracy, guess, min, max);
} catch (std::exception &e) {
if (validCurve_) {
// the previous curve state might have been a
// bad guess, so we retry without using it.
// This would be tricky to do here (we're
// inside multiple nested for loops, we need
// to re-initialize...), so we invalidate the
// curve, make a recursive call and then exit.
validCurve_ = initialized_ = false;
calculate();
return;
}
// If we have more attempts left on this iteration, try again. Note that the max and min
// bounds will be widened on the retry.
if (attempts[i] < maxAttempts_) {
attempts[i]++;
i--;
continue;
}
if (dontThrow_) {
// Use the fallback value
ts_->data_[i] = detail::dontThrowFallback(*errors_[i], min, max, dontThrowSteps_);
// Remember to update the interpolation. If we don't and we are on the last "i", we will still
// have the last attempted value in the solver being used in ts_->interpolation_.
ts_->interpolation_.update();
} else {
QL_FAIL(io::ordinal(iteration + 1) << " iteration: failed "
"at " << io::ordinal(i) << " alive instrument, "
"pillar " << errors_[i]->helper()->pillarDate() <<
", maturity " << errors_[i]->helper()->maturityDate() <<
", reference date " << ts_->dates_[0] <<
": " << e.what());
}
}
}
if (!loopRequired_)
break;
// exit condition
Real change = std::fabs(data[1]-previousData_[1]);
for (Size i=2; i<=alive_; ++i)
change = std::max(change, std::fabs(data[i]-previousData_[i]));
if (change<=accuracy) // convergence reached
break;
// If we hit the max number of iterations and dontThrow is true, just use what we have
if (iteration == maxIterations) {
if (dontThrow_) {
break;
} else {
QL_FAIL("convergence not reached after " << iteration <<
" iterations; last improvement " << change <<
", required accuracy " << accuracy);
}
}
validData = true;
}
validCurve_ = true;
}
}
#endif
|