1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009, 2011 Chris Kenyon
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/termstructures/volatility/inflation/cpivolatilitystructure.hpp>
#include <ql/termstructures/inflationtermstructure.hpp>
namespace QuantLib {
CPIVolatilitySurface::CPIVolatilitySurface(Natural settlementDays,
const Calendar& cal,
BusinessDayConvention bdc,
const DayCounter& dc,
const Period& observationLag,
Frequency frequency,
bool indexIsInterpolated)
: VolatilityTermStructure(settlementDays, cal, bdc, dc),
baseLevel_(Null<Volatility>()), observationLag_(observationLag),
frequency_(frequency), indexIsInterpolated_(indexIsInterpolated)
{}
Date CPIVolatilitySurface::baseDate() const {
// Depends on interpolation, or not, of observed index
// and observation lag with which it was built.
// We want this to work even if the index does not
// have a term structure.
if (indexIsInterpolated()) {
return referenceDate() - observationLag();
} else {
return inflationPeriod(referenceDate() - observationLag(),
frequency()).first;
}
}
void CPIVolatilitySurface::checkRange(const Date& d, Rate strike,
bool extrapolate) const {
QL_REQUIRE(d >= baseDate(),
"date (" << d << ") is before base date");
QL_REQUIRE(extrapolate || allowsExtrapolation() || d <= maxDate(),
"date (" << d << ") is past max curve date ("
<< maxDate() << ")");
QL_REQUIRE(extrapolate || allowsExtrapolation() ||
(strike >= minStrike() && strike <= maxStrike()),
"strike (" << strike << ") is outside the curve domain ["
<< minStrike() << "," << maxStrike()<< "]] at date = " << d);
}
void CPIVolatilitySurface::checkRange(Time t, Rate strike,
bool extrapolate) const {
QL_REQUIRE(t >= timeFromReference(baseDate()),
"time (" << t << ") is before base date");
QL_REQUIRE(extrapolate || allowsExtrapolation() || t <= maxTime(),
"time (" << t << ") is past max curve time ("
<< maxTime() << ")");
QL_REQUIRE(extrapolate || allowsExtrapolation() ||
(strike >= minStrike() && strike <= maxStrike()),
"strike (" << strike << ") is outside the curve domain ["
<< minStrike() << "," << maxStrike()<< "] at time = " << t);
}
Volatility CPIVolatilitySurface::volatility(const Date& maturityDate,
Rate strike,
const Period& obsLag,
bool extrapolate) const {
Period useLag = obsLag;
if (obsLag==Period(-1,Days)) {
useLag = observationLag();
}
if (indexIsInterpolated()) {
checkRange(maturityDate-useLag, strike, extrapolate);
Time t = timeFromReference(maturityDate-useLag);
return volatilityImpl(t,strike);
} else {
std::pair<Date,Date> dd =
inflationPeriod(maturityDate-useLag, frequency());
checkRange(dd.first, strike, extrapolate);
Time t = timeFromReference(dd.first);
return volatilityImpl(t,strike);
}
}
Volatility CPIVolatilitySurface::volatility(const Period& optionTenor,
Rate strike,
const Period& obsLag,
bool extrapolate) const {
Date maturityDate = optionDateFromTenor(optionTenor);
return volatility(maturityDate, strike, obsLag, extrapolate);
}
Volatility CPIVolatilitySurface::volatility(Time time, Rate strike) const {
return volatilityImpl(time, strike);
}
//! needed for total variance calculations
Time CPIVolatilitySurface::timeFromBase(const Date& maturityDate,
const Period& obsLag) const {
Period useLag = obsLag;
if (obsLag==Period(-1,Days)) {
useLag = observationLag();
}
Date useDate;
if (indexIsInterpolated()) {
useDate = maturityDate - useLag;
} else {
useDate = inflationPeriod(maturityDate - useLag,
frequency()).first;
}
// This assumes that the inflation term structure starts
// as late as possible given the inflation index definition,
// which is the usual case.
return dayCounter().yearFraction(baseDate(), useDate);
}
Volatility CPIVolatilitySurface::totalVariance(const Date& maturityDate,
Rate strike,
const Period& obsLag,
bool extrapolate) const {
Volatility vol = volatility(maturityDate, strike, obsLag, extrapolate);
Time t = timeFromBase(maturityDate, obsLag);
return vol*vol*t;
}
Volatility CPIVolatilitySurface::totalVariance(const Period& tenor,
Rate strike,
const Period& obsLag,
bool extrap) const {
Date maturityDate = optionDateFromTenor(tenor);
return totalVariance(maturityDate, strike, obsLag, extrap);
}
}
|