1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Ferdinando Ametrano
Copyright (C) 2007 Marco Bianchetti
Copyright (C) 2006, 2007 Giorgio Facchinetti
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/cashflows/cashflows.hpp>
#include <ql/indexes/swapindex.hpp>
#include <ql/instruments/makecms.hpp>
#include <ql/instruments/swap.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/volatility/swaption/cmsmarket.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
#include <utility>
using std::vector;
namespace QuantLib {
CmsMarket::CmsMarket(vector<Period> swapLengths,
vector<ext::shared_ptr<SwapIndex> > swapIndexes,
ext::shared_ptr<IborIndex> iborIndex,
const vector<vector<Handle<Quote> > >& bidAskSpreads,
const vector<ext::shared_ptr<CmsCouponPricer> >& pricers,
Handle<YieldTermStructure> discountingTS)
: swapLengths_(std::move(swapLengths)), swapIndexes_(std::move(swapIndexes)),
iborIndex_(std::move(iborIndex)), bidAskSpreads_(bidAskSpreads), pricers_(pricers),
discTS_(std::move(discountingTS)),
nExercise_(swapLengths_.size()), nSwapIndexes_(swapIndexes_.size()),
swapTenors_(nSwapIndexes_),
spotFloatLegNPV_(nExercise_, nSwapIndexes_), spotFloatLegBPS_(nExercise_, nSwapIndexes_),
mktBidSpreads_(nExercise_, nSwapIndexes_), mktAskSpreads_(nExercise_, nSwapIndexes_),
mktSpreads_(nExercise_, nSwapIndexes_), mdlSpreads_(nExercise_, nSwapIndexes_),
errSpreads_(nExercise_, nSwapIndexes_),
mktSpotCmsLegNPV_(nExercise_, nSwapIndexes_), mdlSpotCmsLegNPV_(nExercise_, nSwapIndexes_),
errSpotCmsLegNPV_(nExercise_, nSwapIndexes_),
mktFwdCmsLegNPV_(nExercise_, nSwapIndexes_), mdlFwdCmsLegNPV_(nExercise_, nSwapIndexes_),
errFwdCmsLegNPV_(nExercise_, nSwapIndexes_),
spotSwaps_(nExercise_, vector<ext::shared_ptr<Swap> >(nSwapIndexes_)),
fwdSwaps_(nExercise_, vector<ext::shared_ptr<Swap> >(nSwapIndexes_)) {
QL_REQUIRE(2 * nSwapIndexes_ == bidAskSpreads[0].size(),
"2*nSwapIndexes_ (" << 2 * nSwapIndexes_
<< ") != bidAskSpreads columns() ("
<< bidAskSpreads[0].size() << ")");
QL_REQUIRE(nExercise_ == bidAskSpreads.size(),
"nExercise_ (" << nExercise_ << ") != bidAskSpreads rows() ("
<< bidAskSpreads.size() << ")");
QL_REQUIRE(nSwapIndexes_ == pricers.size(),
"nSwapIndexes_ (" << nSwapIndexes_ << ") != pricers ("
<< pricers_.size() << ")");
for (Size j=0; j<nSwapIndexes_; ++j) {
swapTenors_[j] = swapIndexes_[j]->tenor();
// pricers
registerWith(pricers_[j]);
for (Size i=0; i<nExercise_; ++i) {
// market Spread
registerWith(bidAskSpreads_[i][j*2]);
registerWith(bidAskSpreads_[i][j*2+1]);
}
}
Period start(0, Years);
for (Size i=0; i<nExercise_; ++i) {
if (i>0) start = swapLengths_[i-1];
for (Size j=0; j<nSwapIndexes_; ++j) {
// never evaluate the spot swap, only its ibor floating leg
spotSwaps_[i][j] = MakeCms(swapLengths_[i],
swapIndexes_[j],
iborIndex_, 0.0,
Period())
.operator ext::shared_ptr<Swap>();
fwdSwaps_[i][j] = MakeCms(swapLengths_[i]-start,
swapIndexes_[j],
iborIndex_, 0.0,
start)
.withCmsCouponPricer(pricers_[j])
.withDiscountingTermStructure(discTS_)
.operator ext::shared_ptr<Swap>();
}
}
// probably useless
performCalculations();
}
void CmsMarket::performCalculations() const {
for (Size j=0; j<nSwapIndexes_; ++j) {
Real mktPrevPart = 0.0, mdlPrevPart = 0.0;
for (Size i=0; i<nExercise_; ++i) {
// **** market
mktBidSpreads_[i][j] = bidAskSpreads_[i][j*2]->value();
mktAskSpreads_[i][j] = bidAskSpreads_[i][j*2+1]->value();
mktSpreads_[i][j] = (mktBidSpreads_[i][j]+mktAskSpreads_[i][j])/2;
const Leg& spotFloatLeg = spotSwaps_[i][j]->leg(1);
spotFloatLegNPV_[i][j] = CashFlows::npv(spotFloatLeg,
**discTS_,
false, discTS_->referenceDate());
spotFloatLegBPS_[i][j] = CashFlows::bps(spotFloatLeg,
**discTS_,
false, discTS_->referenceDate());
// imply the spot CMS leg NPV from the spot ibor floating leg NPV
mktSpotCmsLegNPV_[i][j] = -(spotFloatLegNPV_[i][j] +
spotFloatLegBPS_[i][j]*mktSpreads_[i][j]/1e-4);
// fwd CMS legs can be computed as differences between spot legs
mktFwdCmsLegNPV_[i][j] = mktSpotCmsLegNPV_[i][j] - mktPrevPart;
mktPrevPart = mktSpotCmsLegNPV_[i][j];
// **** model
// calculate the forward swap (the time consuming part)
mdlFwdCmsLegNPV_[i][j] = fwdSwaps_[i][j]->legNPV(0);
errFwdCmsLegNPV_[i][j] = mdlFwdCmsLegNPV_[i][j] -
mktFwdCmsLegNPV_[i][j];
// spot CMS legs can be computed as incremental sum of forward legs
mdlSpotCmsLegNPV_[i][j] = mdlPrevPart + mdlFwdCmsLegNPV_[i][j];
mdlPrevPart = mdlSpotCmsLegNPV_[i][j];
errSpotCmsLegNPV_[i][j] = mdlSpotCmsLegNPV_[i][j] -
mktSpotCmsLegNPV_[i][j];
// equilibriums spread over ibor leg
Real npv = spotFloatLegNPV_[i][j] + mdlSpotCmsLegNPV_[i][j];
mdlSpreads_[i][j] = - npv/spotFloatLegBPS_[i][j]*1e-4;
errSpreads_[i][j] = mdlSpreads_[i][j] - mktSpreads_[i][j];
}
}
}
void CmsMarket::reprice(const Handle<SwaptionVolatilityStructure> &v,
Real meanReversion) {
Handle<Quote> meanReversionQuote(
ext::make_shared<SimpleQuote>(meanReversion));
for (Size j = 0; j < nSwapIndexes_; ++j) {
// ??
// set new volatility structure and new mean reversion
pricers_[j]->setSwaptionVolatility(v);
if (meanReversion != Null<Real>()) {
ext::shared_ptr<MeanRevertingPricer> p =
ext::dynamic_pointer_cast<MeanRevertingPricer>(
pricers_[j]);
QL_REQUIRE(p != nullptr, "mean reverting pricer required at index " << j);
p->setMeanReversion(meanReversionQuote);
}
}
performCalculations();
}
Real CmsMarket::weightedFwdNpvError(const Matrix& w) {
performCalculations();
return weightedMean(errFwdCmsLegNPV_, w);
}
Real CmsMarket::weightedSpotNpvError(const Matrix& w) {
performCalculations();
return weightedMean(errSpotCmsLegNPV_, w);
}
Real CmsMarket::weightedSpreadError(const Matrix& w) {
performCalculations();
return weightedMean(errSpreads_, w);
}
// array of errors to be used by Levenberg-Marquardt optimization
Array CmsMarket::weightedFwdNpvErrors(const Matrix& w) {
performCalculations();
return weightedMeans(errFwdCmsLegNPV_, w);
}
Array CmsMarket::weightedSpotNpvErrors(const Matrix& w) {
performCalculations();
return weightedMeans(errSpotCmsLegNPV_, w);
}
Array CmsMarket::weightedSpreadErrors(const Matrix& w) {
performCalculations();
return weightedMeans(errSpreads_, w);
}
Real CmsMarket::weightedMean(const Matrix& var, const Matrix& w) const {
Real mean = 0.0;
for (Size i=0; i<nExercise_; ++i) {
for (Size j=0; j<nSwapIndexes_; ++j) {
mean += w[i][j]*var[i][j]*var[i][j];
}
}
mean = std::sqrt(mean/(nExercise_*nSwapIndexes_));
return mean;
}
Array CmsMarket::weightedMeans(const Matrix& var, const Matrix& w) const {
Array weightedVars(nExercise_*nSwapIndexes_);
for (Size i=0; i<nExercise_; ++i) {
for (Size j=0; j<nSwapIndexes_; ++j) {
weightedVars[i*nSwapIndexes_+j] = std::sqrt(w[i][j])*var[i][j];
}
}
return weightedVars;
}
Matrix CmsMarket::browse() const {
calculate();
//Matrix result(nExercise_*nSwapIndexes_, 15);
Matrix result(nExercise_*nSwapIndexes_, 14);
for (Size j=0; j<nSwapIndexes_; ++j) {
for (Size i=0; i<nExercise_; ++i) {
result[j*nExercise_+i][0] = swapTenors_[j].length();
result[j*nExercise_+i][1] = swapLengths_[i].length();
// Spreads
result[j*nExercise_+i][2] = mktBidSpreads_[i][j]*10000;
result[j*nExercise_+i][3] = mktAskSpreads_[i][j]*10000;
result[j*nExercise_+i][4] = mktSpreads_[i][j]*10000;
result[j*nExercise_+i][5] = mdlSpreads_[i][j]*10000;
result[j*nExercise_+i][6] = errSpreads_[i][j]*10000;
if (mdlSpreads_[i][j]>mktAskSpreads_[i][j])
result[j*nExercise_+i][7] = (mdlSpreads_[i][j] -
mktAskSpreads_[i][j])*10000;
else if (mdlSpreads_[i][j]<mktBidSpreads_[i][j])
result[j*nExercise_+i][7] = (mktBidSpreads_[i][j] -
mdlSpreads_[i][j])*10000;
else
result[j*nExercise_+i][7] = 0.0;
// spot CMS Leg NPVs
result[j*nExercise_+i][ 8] = mktSpotCmsLegNPV_[i][j];
result[j*nExercise_+i][ 9] = mdlSpotCmsLegNPV_[i][j];
result[j*nExercise_+i][10] = errSpotCmsLegNPV_[i][j];
// forward CMS Leg NPVs
result[j*nExercise_+i][11] = mktFwdCmsLegNPV_[i][j];
result[j*nExercise_+i][12] = mdlFwdCmsLegNPV_[i][j];
result[j*nExercise_+i][13] = errFwdCmsLegNPV_[i][j];
}
}
return result;
}
}
|