1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*!
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2003, 2004, 2005, 2006, 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/* This example computes profit and loss of a discrete interval hedging
strategy and compares with the results of Derman & Kamal's (Goldman Sachs
Equity Derivatives Research) Research Note: "When You Cannot Hedge
Continuously: The Corrections to Black-Scholes"
http://www.ederman.com/emanuelderman/GSQSpapers/when_you_cannot_hedge.pdf
Suppose an option hedger sells an European option and receives the
Black-Scholes value as the options premium.
Then he follows a Black-Scholes hedging strategy, rehedging at discrete,
evenly spaced time intervals as the underlying stock changes. At
expiration, the hedger delivers the option payoff to the option holder,
and unwinds the hedge. We are interested in understanding the final
profit or loss of this strategy.
If the hedger had followed the exact Black-Scholes replication strategy,
re-hedging continuously as the underlying stock evolved towards its final
value at expiration, then, no matter what path the stock took, the final
P&L would be exactly zero. When the replication strategy deviates from
the exact Black-Scholes method, the final P&L may deviate from zero. This
deviation is called the replication error. When the hedger rebalances at
discrete rather than continuous intervals, the hedge is imperfect and the
replication is inexact. The more often hedging occurs, the smaller the
replication error.
We examine the range of possibilities, computing the replication error.
*/
#include <ql/qldefines.hpp>
#if !defined(BOOST_ALL_NO_LIB) && defined(BOOST_MSVC)
# include <ql/auto_link.hpp>
#endif
#include <ql/methods/montecarlo/montecarlomodel.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/time/daycounters/actual365fixed.hpp>
#include <iostream>
#include <iomanip>
using namespace QuantLib;
/* The ReplicationError class carries out Monte Carlo simulations to evaluate
the outcome (the replication error) of the discrete hedging strategy over
different, randomly generated scenarios of future stock price evolution.
*/
class ReplicationError
{
public:
ReplicationError(Option::Type type,
Time maturity,
Real strike,
Real s0,
Volatility sigma,
Rate r)
: maturity_(maturity), payoff_(type, strike), s0_(s0),
sigma_(sigma), r_(r) {
// value of the option
DiscountFactor rDiscount = std::exp(-r_*maturity_);
DiscountFactor qDiscount = 1.0;
Real forward = s0_*qDiscount/rDiscount;
Real stdDev = std::sqrt(sigma_*sigma_*maturity_);
auto payoff = ext::make_shared<PlainVanillaPayoff>(payoff_);
BlackCalculator black(payoff,forward,stdDev,rDiscount);
std::cout << "Option value: " << black.value() << std::endl;
// store option's vega, since Derman and Kamal's formula needs it
vega_ = black.vega(maturity_);
std::cout << std::endl;
std::cout << std::setw(8) << " " << " | "
<< std::setw(8) << " " << " | "
<< std::setw(8) << "P&L" << " | "
<< std::setw(8) << "P&L" << " | "
<< std::setw(12) << "Derman&Kamal" << " | "
<< std::setw(8) << "P&L" << " | "
<< std::setw(8) << "P&L" << std::endl;
std::cout << std::setw(8) << "samples" << " | "
<< std::setw(8) << "trades" << " | "
<< std::setw(8) << "mean" << " | "
<< std::setw(8) << "std.dev." << " | "
<< std::setw(12) << "formula" << " | "
<< std::setw(8) << "skewness" << " | "
<< std::setw(8) << "kurtosis" << std::endl;
std::cout << std::string(78, '-') << std::endl;
}
// the actual replication error computation
void compute(Size nTimeSteps, Size nSamples);
private:
Time maturity_;
PlainVanillaPayoff payoff_;
Real s0_;
Volatility sigma_;
Rate r_;
Real vega_;
};
// The key for the MonteCarlo simulation is to have a PathPricer that
// implements a value(const Path& path) method.
// This method prices the portfolio for each Path of the random variable
class ReplicationPathPricer : public PathPricer<Path> {
public:
// real constructor
ReplicationPathPricer(Option::Type type,
Real strike,
Rate r,
Time maturity,
Volatility sigma)
: type_(type), strike_(strike),
r_(r), maturity_(maturity), sigma_(sigma) {
QL_REQUIRE(strike_ > 0.0, "strike must be positive");
QL_REQUIRE(r_ >= 0.0,
"risk free rate (r) must be positive or zero");
QL_REQUIRE(maturity_ > 0.0, "maturity must be positive");
QL_REQUIRE(sigma_ >= 0.0,
"volatility (sigma) must be positive or zero");
}
// The value() method encapsulates the pricing code
Real operator()(const Path& path) const override;
private:
Option::Type type_;
Real strike_;
Rate r_;
Time maturity_;
Volatility sigma_;
};
// Compute Replication Error as in the Derman and Kamal's research note
int main(int, char* []) {
try {
std::cout << std::endl;
Time maturity = 1.0/12.0; // 1 month
Real strike = 100;
Real underlying = 100;
Volatility volatility = 0.20; // 20%
Rate riskFreeRate = 0.05; // 5%
ReplicationError rp(Option::Call, maturity, strike, underlying,
volatility, riskFreeRate);
Size scenarios = 50000;
Size hedgesNum;
hedgesNum = 21;
rp.compute(hedgesNum, scenarios);
hedgesNum = 84;
rp.compute(hedgesNum, scenarios);
return 0;
} catch (std::exception& e) {
std::cerr << e.what() << std::endl;
return 1;
} catch (...) {
std::cerr << "unknown error" << std::endl;
return 1;
}
}
/* The actual computation of the Profit&Loss for each single path.
In each scenario N rehedging trades spaced evenly in time over
the life of the option are carried out, using the Black-Scholes
hedge ratio.
*/
Real ReplicationPathPricer::operator()(const Path& path) const {
Size n = path.length()-1;
QL_REQUIRE(n>0, "the path cannot be empty");
// discrete hedging interval
Time dt = maturity_/n;
// For simplicity, we assume the stock pays no dividends.
Rate stockDividendYield = 0.0;
// let's start
Time t = 0;
// stock value at t=0
Real stock = path.front();
// money account at t=0
Real money_account = 0.0;
/************************/
/*** the initial deal ***/
/************************/
// option fair price (Black-Scholes) at t=0
DiscountFactor rDiscount = std::exp(-r_*maturity_);
DiscountFactor qDiscount = std::exp(-stockDividendYield*maturity_);
Real forward = stock*qDiscount/rDiscount;
Real stdDev = std::sqrt(sigma_*sigma_*maturity_);
auto payoff = ext::make_shared<PlainVanillaPayoff>(type_,strike_);
BlackCalculator black(payoff,forward,stdDev,rDiscount);
// sell the option, cash in its premium
money_account += black.value();
// compute delta
Real delta = black.delta(stock);
// delta-hedge the option buying stock
Real stockAmount = delta;
money_account -= stockAmount*stock;
/**********************************/
/*** hedging during option life ***/
/**********************************/
for (Size step = 0; step < n-1; step++){
// time flows
t += dt;
// accruing on the money account
money_account *= std::exp( r_*dt );
// stock growth:
stock = path[step+1];
// recalculate option value at the current stock value,
// and the current time to maturity
rDiscount = std::exp(-r_*(maturity_-t));
qDiscount = std::exp(-stockDividendYield*(maturity_-t));
forward = stock*qDiscount/rDiscount;
stdDev = std::sqrt(sigma_*sigma_*(maturity_-t));
BlackCalculator black(payoff,forward,stdDev,rDiscount);
// recalculate delta
delta = black.delta(stock);
// re-hedging
money_account -= (delta - stockAmount)*stock;
stockAmount = delta;
}
/*************************/
/*** option expiration ***/
/*************************/
// last accrual on my money account
money_account *= std::exp( r_*dt );
// last stock growth
stock = path[n];
// the hedger delivers the option payoff to the option holder
Real optionPayoff = PlainVanillaPayoff(type_, strike_)(stock);
money_account -= optionPayoff;
// and unwinds the hedge selling his stock position
money_account += stockAmount*stock;
// final Profit&Loss
return money_account;
}
// The computation over nSamples paths of the P&L distribution
void ReplicationError::compute(Size nTimeSteps, Size nSamples)
{
QL_REQUIRE(nTimeSteps>0, "the number of steps must be > 0");
// hedging interval
// Time tau = maturity_ / nTimeSteps;
/* Black-Scholes framework: the underlying stock price evolves
lognormally with a fixed known volatility that stays constant
throughout time.
*/
Calendar calendar = TARGET();
Date today = Date::todaysDate();
DayCounter dayCount = Actual365Fixed();
auto stateVariable = makeQuoteHandle(s0_);
Handle<YieldTermStructure> riskFreeRate(
ext::make_shared<FlatForward>(today, r_, dayCount));
Handle<YieldTermStructure> dividendYield(
ext::make_shared<FlatForward>(today, 0.0, dayCount));
Handle<BlackVolTermStructure> volatility(
ext::make_shared<BlackConstantVol>(today, calendar, sigma_, dayCount));
auto diffusion = ext::make_shared<BlackScholesMertonProcess>(
stateVariable, dividendYield, riskFreeRate, volatility);
// Black Scholes equation rules the path generator:
// at each step the log of the stock
// will have drift and sigma^2 variance
PseudoRandom::rsg_type rsg =
PseudoRandom::make_sequence_generator(nTimeSteps, 0);
bool brownianBridge = false;
typedef SingleVariate<PseudoRandom>::path_generator_type generator_type;
auto myPathGenerator = ext::make_shared<generator_type>(
diffusion, maturity_, nTimeSteps,
rsg, brownianBridge);
// The replication strategy's Profit&Loss is computed for each path
// of the stock. The path pricer knows how to price a path using its
// value() method
auto myPathPricer = ext::make_shared<ReplicationPathPricer>(
payoff_.optionType(), payoff_.strike(),
r_, maturity_, sigma_);
// a statistics accumulator for the path-dependant Profit&Loss values
Statistics statisticsAccumulator;
// The Monte Carlo model generates paths using myPathGenerator
// each path is priced using myPathPricer
// prices will be accumulated into statisticsAccumulator
MonteCarloModel<SingleVariate,PseudoRandom>
MCSimulation(myPathGenerator,
myPathPricer,
statisticsAccumulator,
false);
// the model simulates nSamples paths
MCSimulation.addSamples(nSamples);
// the sampleAccumulator method
// gives access to all the methods of statisticsAccumulator
Real PLMean = MCSimulation.sampleAccumulator().mean();
Real PLStDev = MCSimulation.sampleAccumulator().standardDeviation();
Real PLSkew = MCSimulation.sampleAccumulator().skewness();
Real PLKurt = MCSimulation.sampleAccumulator().kurtosis();
// Derman and Kamal's formula
Real theorStD = std::sqrt(M_PI/4/nTimeSteps)*vega_*sigma_;
std::cout << std::fixed
<< std::setw(8) << nSamples << " | "
<< std::setw(8) << nTimeSteps << " | "
<< std::setw(8) << std::setprecision(3) << PLMean << " | "
<< std::setw(8) << std::setprecision(2) << PLStDev << " | "
<< std::setw(12) << std::setprecision(2) << theorStD << " | "
<< std::setw(8) << std::setprecision(2) << PLSkew << " | "
<< std::setw(8) << std::setprecision(2) << PLKurt << std::endl;
}
|