File: DiscreteHedging.cpp

package info (click to toggle)
quantlib 1.39-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 41,264 kB
  • sloc: cpp: 396,561; makefile: 6,539; python: 272; sh: 154; lisp: 86
file content (367 lines) | stat: -rw-r--r-- 13,614 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*!
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
 Copyright (C) 2003, 2004, 2005, 2006, 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*  This example computes profit and loss of a discrete interval hedging
    strategy and compares with the results of Derman & Kamal's (Goldman Sachs
    Equity Derivatives Research) Research Note: "When You Cannot Hedge
    Continuously: The Corrections to Black-Scholes"
    http://www.ederman.com/emanuelderman/GSQSpapers/when_you_cannot_hedge.pdf

    Suppose an option hedger sells an European option and receives the
    Black-Scholes value as the options premium.
    Then he follows a Black-Scholes hedging strategy, rehedging at discrete,
    evenly spaced time intervals as the underlying stock changes. At
    expiration, the hedger delivers the option payoff to the option holder,
    and unwinds the hedge. We are interested in understanding the final
    profit or loss of this strategy.

    If the hedger had followed the exact Black-Scholes replication strategy,
    re-hedging continuously as the underlying stock evolved towards its final
    value at expiration, then, no matter what path the stock took, the final
    P&L would be exactly zero. When the replication strategy deviates from
    the exact Black-Scholes method, the final P&L may deviate from zero. This
    deviation is called the replication error. When the hedger rebalances at
    discrete rather than continuous intervals, the hedge is imperfect and the
    replication is inexact. The more often hedging occurs, the smaller the
    replication error.

    We examine the range of possibilities, computing the replication error.
*/

#include <ql/qldefines.hpp>
#if !defined(BOOST_ALL_NO_LIB) && defined(BOOST_MSVC)
#  include <ql/auto_link.hpp>
#endif
#include <ql/methods/montecarlo/montecarlomodel.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/time/daycounters/actual365fixed.hpp>

#include <iostream>
#include <iomanip>

using namespace QuantLib;

/* The ReplicationError class carries out Monte Carlo simulations to evaluate
   the outcome (the replication error) of the discrete hedging strategy over
   different, randomly generated scenarios of future stock price evolution.
*/
class ReplicationError
{
public:
    ReplicationError(Option::Type type,
                     Time maturity,
                     Real strike,
                     Real s0,
                     Volatility sigma,
                     Rate r)
    : maturity_(maturity), payoff_(type, strike), s0_(s0),
      sigma_(sigma), r_(r) {

        // value of the option
        DiscountFactor rDiscount = std::exp(-r_*maturity_);
        DiscountFactor qDiscount = 1.0;
        Real forward = s0_*qDiscount/rDiscount;
        Real stdDev = std::sqrt(sigma_*sigma_*maturity_);
        auto payoff = ext::make_shared<PlainVanillaPayoff>(payoff_);
        BlackCalculator black(payoff,forward,stdDev,rDiscount);
        std::cout << "Option value: " << black.value() << std::endl;

        // store option's vega, since Derman and Kamal's formula needs it
        vega_ = black.vega(maturity_);

        std::cout << std::endl;

        std::cout << std::setw(8) << " " << " | "
                  << std::setw(8) << " " << " | "
                  << std::setw(8) << "P&L" << " | "
                  << std::setw(8) << "P&L" << " | "
                  << std::setw(12) << "Derman&Kamal" << " | "
                  << std::setw(8) << "P&L" << " | "
                  << std::setw(8) << "P&L" << std::endl;

        std::cout << std::setw(8) << "samples" << " | "
                  << std::setw(8) << "trades" << " | "
                  << std::setw(8) << "mean" << " | "
                  << std::setw(8) << "std.dev." << " | "
                  << std::setw(12) << "formula" << " | "
                  << std::setw(8) << "skewness" << " | "
                  << std::setw(8) << "kurtosis" << std::endl;

        std::cout << std::string(78, '-') << std::endl;
    }

    // the actual replication error computation
    void compute(Size nTimeSteps, Size nSamples);
private:
    Time maturity_;
    PlainVanillaPayoff payoff_;
    Real s0_;
    Volatility sigma_;
    Rate r_;
    Real vega_;
};

// The key for the MonteCarlo simulation is to have a PathPricer that
// implements a value(const Path& path) method.
// This method prices the portfolio for each Path of the random variable
class ReplicationPathPricer : public PathPricer<Path> {
  public:
    // real constructor
    ReplicationPathPricer(Option::Type type,
                          Real strike,
                          Rate r,
                          Time maturity,
                          Volatility sigma)
    : type_(type), strike_(strike),
      r_(r), maturity_(maturity), sigma_(sigma) {
        QL_REQUIRE(strike_ > 0.0, "strike must be positive");
        QL_REQUIRE(r_ >= 0.0,
                   "risk free rate (r) must be positive or zero");
        QL_REQUIRE(maturity_ > 0.0, "maturity must be positive");
        QL_REQUIRE(sigma_ >= 0.0,
                   "volatility (sigma) must be positive or zero");

    }
    // The value() method encapsulates the pricing code
    Real operator()(const Path& path) const override;

  private:
    Option::Type type_;
    Real strike_;
    Rate r_;
    Time maturity_;
    Volatility sigma_;
};


// Compute Replication Error as in the Derman and Kamal's research note
int main(int, char* []) {

    try {

        std::cout << std::endl;

        Time maturity = 1.0/12.0;   // 1 month
        Real strike = 100;
        Real underlying = 100;
        Volatility volatility = 0.20; // 20%
        Rate riskFreeRate = 0.05; // 5%
        ReplicationError rp(Option::Call, maturity, strike, underlying,
                volatility, riskFreeRate);

        Size scenarios = 50000;
        Size hedgesNum;

        hedgesNum = 21;
        rp.compute(hedgesNum, scenarios);

        hedgesNum = 84;
        rp.compute(hedgesNum, scenarios);

        return 0;
    } catch (std::exception& e) {
        std::cerr << e.what() << std::endl;
        return 1;
    } catch (...) {
        std::cerr << "unknown error" << std::endl;
        return 1;
    }
}


/* The actual computation of the Profit&Loss for each single path.

   In each scenario N rehedging trades spaced evenly in time over
   the life of the option are carried out, using the Black-Scholes
   hedge ratio.
*/
Real ReplicationPathPricer::operator()(const Path& path) const {

    Size n = path.length()-1;
    QL_REQUIRE(n>0, "the path cannot be empty");

    // discrete hedging interval
    Time dt = maturity_/n;

    // For simplicity, we assume the stock pays no dividends.
    Rate stockDividendYield = 0.0;

    // let's start
    Time t = 0;

    // stock value at t=0
    Real stock = path.front();

    // money account at t=0
    Real money_account = 0.0;

    /************************/
    /*** the initial deal ***/
    /************************/
    // option fair price (Black-Scholes) at t=0
    DiscountFactor rDiscount = std::exp(-r_*maturity_);
    DiscountFactor qDiscount = std::exp(-stockDividendYield*maturity_);
    Real forward = stock*qDiscount/rDiscount;
    Real stdDev = std::sqrt(sigma_*sigma_*maturity_);
    auto payoff = ext::make_shared<PlainVanillaPayoff>(type_,strike_);
    BlackCalculator black(payoff,forward,stdDev,rDiscount);
    // sell the option, cash in its premium
    money_account += black.value();
    // compute delta
    Real delta = black.delta(stock);
    // delta-hedge the option buying stock
    Real stockAmount = delta;
    money_account -= stockAmount*stock;

    /**********************************/
    /*** hedging during option life ***/
    /**********************************/
    for (Size step = 0; step < n-1; step++){

        // time flows
        t += dt;

        // accruing on the money account
        money_account *= std::exp( r_*dt );

        // stock growth:
        stock = path[step+1];

        // recalculate option value at the current stock value,
        // and the current time to maturity
        rDiscount = std::exp(-r_*(maturity_-t));
        qDiscount = std::exp(-stockDividendYield*(maturity_-t));
        forward = stock*qDiscount/rDiscount;
        stdDev = std::sqrt(sigma_*sigma_*(maturity_-t));
        BlackCalculator black(payoff,forward,stdDev,rDiscount);

        // recalculate delta
        delta = black.delta(stock);

        // re-hedging
        money_account -= (delta - stockAmount)*stock;
        stockAmount = delta;
    }

    /*************************/
    /*** option expiration ***/
    /*************************/
    // last accrual on my money account
    money_account *= std::exp( r_*dt );
    // last stock growth
    stock = path[n];

    // the hedger delivers the option payoff to the option holder
    Real optionPayoff = PlainVanillaPayoff(type_, strike_)(stock);
    money_account -= optionPayoff;

    // and unwinds the hedge selling his stock position
    money_account += stockAmount*stock;

    // final Profit&Loss
    return money_account;
}


// The computation over nSamples paths of the P&L distribution
void ReplicationError::compute(Size nTimeSteps, Size nSamples)
{
    QL_REQUIRE(nTimeSteps>0, "the number of steps must be > 0");

    // hedging interval
    // Time tau = maturity_ / nTimeSteps;

    /* Black-Scholes framework: the underlying stock price evolves
       lognormally with a fixed known volatility that stays constant
       throughout time.
    */
    Calendar calendar = TARGET();
    Date today = Date::todaysDate();
    DayCounter dayCount = Actual365Fixed();
    auto stateVariable = makeQuoteHandle(s0_);
    Handle<YieldTermStructure> riskFreeRate(
                          ext::make_shared<FlatForward>(today, r_, dayCount));
    Handle<YieldTermStructure> dividendYield(
                          ext::make_shared<FlatForward>(today, 0.0, dayCount));
    Handle<BlackVolTermStructure> volatility(
                          ext::make_shared<BlackConstantVol>(today, calendar, sigma_, dayCount));
    auto diffusion = ext::make_shared<BlackScholesMertonProcess>(
                          stateVariable, dividendYield, riskFreeRate, volatility);

    // Black Scholes equation rules the path generator:
    // at each step the log of the stock
    // will have drift and sigma^2 variance
    PseudoRandom::rsg_type rsg =
        PseudoRandom::make_sequence_generator(nTimeSteps, 0);

    bool brownianBridge = false;

    typedef SingleVariate<PseudoRandom>::path_generator_type generator_type;
    auto myPathGenerator = ext::make_shared<generator_type>(
                       diffusion, maturity_, nTimeSteps,
                       rsg, brownianBridge);

    // The replication strategy's Profit&Loss is computed for each path
    // of the stock. The path pricer knows how to price a path using its
    // value() method
    auto myPathPricer = ext::make_shared<ReplicationPathPricer>(
                              payoff_.optionType(), payoff_.strike(),
                              r_, maturity_, sigma_);

    // a statistics accumulator for the path-dependant Profit&Loss values
    Statistics statisticsAccumulator;

    // The Monte Carlo model generates paths using myPathGenerator
    // each path is priced using myPathPricer
    // prices will be accumulated into statisticsAccumulator
    MonteCarloModel<SingleVariate,PseudoRandom>
        MCSimulation(myPathGenerator,
                     myPathPricer,
                     statisticsAccumulator,
                     false);

    // the model simulates nSamples paths
    MCSimulation.addSamples(nSamples);

    // the sampleAccumulator method
    // gives access to all the methods of statisticsAccumulator
    Real PLMean  = MCSimulation.sampleAccumulator().mean();
    Real PLStDev = MCSimulation.sampleAccumulator().standardDeviation();
    Real PLSkew  = MCSimulation.sampleAccumulator().skewness();
    Real PLKurt  = MCSimulation.sampleAccumulator().kurtosis();

    // Derman and Kamal's formula
    Real theorStD = std::sqrt(M_PI/4/nTimeSteps)*vega_*sigma_;


    std::cout << std::fixed
              << std::setw(8) << nSamples << " | "
              << std::setw(8) << nTimeSteps << " | "
              << std::setw(8) << std::setprecision(3) << PLMean << " | "
              << std::setw(8) << std::setprecision(2) << PLStDev << " | "
              << std::setw(12) << std::setprecision(2) << theorStD << " | "
              << std::setw(8) << std::setprecision(2) << PLSkew << " | "
              << std::setw(8) << std::setprecision(2) << PLKurt << std::endl;
}