1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*!
Copyright (C) 2016 Andres Hernandez
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/qldefines.hpp>
#if !defined(BOOST_ALL_NO_LIB) && defined(BOOST_MSVC)
# include <ql/auto_link.hpp>
#endif
#include <ql/experimental/math/fireflyalgorithm.hpp>
#include <ql/experimental/math/hybridsimulatedannealing.hpp>
#include <ql/experimental/math/particleswarmoptimization.hpp>
#include <ql/math/optimization/differentialevolution.hpp>
#include <ql/math/optimization/simulatedannealing.hpp>
#include <functional>
#include <iomanip>
#include <iostream>
#include <utility>
using namespace QuantLib;
unsigned long seed = 127;
/*
Some benchmark functions taken from
https://en.wikipedia.org/wiki/Test_functions_for_optimization
Global optimizers have generally a lot of hyper-parameters, and one
* usually requires some hyper-parameter optimization to find appropriate values
*/
Real ackley(const Array& x) {
//Minimum is found at 0
Real p1 = 0.0, p2 = 0.0;
for (Real i : x) {
p1 += i * i;
p2 += std::cos(M_TWOPI * i);
}
p1 = -0.2*std::sqrt(0.5*p1);
p2 *= 0.5;
return M_E + 20.0 - 20.0*std::exp(p1)-std::exp(p2);
}
Array ackleyValues(const Array& x) {
Array y(x.size());
for (Size i = 0; i < x.size(); i++) {
Real p1 = x[i] * x[i];
p1 = -0.2*std::sqrt(0.5*p1);
Real p2 = 0.5*std::cos(M_TWOPI*x[i]);
y[i] = M_E + 20.0 - 20.0*std::exp(p1)-std::exp(p2);
}
return y;
}
Real sphere(const Array& x) {
//Minimum is found at 0
return DotProduct(x, x);
}
Array sphereValues(const Array& x) {
Array y(x.size());
for (Size i = 0; i < x.size(); i++) {
y[i] = x[i]*x[i];
}
return y;
}
Real rosenbrock(const Array& x) {
//Minimum is found at f(1, 1, ...)
QL_REQUIRE(x.size() > 1, "Input size needs to be higher than 1");
Real result = 0.0;
for (Size i = 0; i < x.size() - 1; i++) {
Real temp = (x[i + 1] - x[i] * x[i]);
result += (x[i] - 1.0)*(x[i] - 1.0) + 100.0*temp*temp;
}
return result;
}
Real easom(const Array& x) {
//Minimum is found at f(\pi, \pi, ...)
Real p1 = 1.0, p2 = 0.0;
for (Real i : x) {
p1 *= std::cos(i);
p2 += (i - M_PI) * (i - M_PI);
}
return -p1*std::exp(-p2);
}
Array easomValues(const Array& x) {
Array y(x.size());
for (Size i = 0; i < x.size(); i++) {
Real p1 = std::cos(x[i]);
Real p2 = (x[i] - M_PI)*(x[i] - M_PI);
y[i] = -p1*std::exp(-p2);
}
return y;
}
Real eggholder(const Array& x) {
//Minimum is found at f(512, 404.2319)
QL_REQUIRE(x.size() == 2, "Input size needs to be equal to 2");
Real p = (x[1] + 47.0);
return -p*std::sin(std::sqrt(std::abs(0.5*x[0] + p))) -
x[0] * std::sin(std::sqrt(std::abs(x[0] - p)));
}
Real printFunction(Problem& p, const Array& x) {
std::cout << " f(" << x[0];
for (Size i = 1; i < x.size(); i++) {
std::cout << ", " << x[i];
}
Real val = p.value(x);
std::cout << ") = " << val << std::endl;
return val;
}
class TestFunction : public CostFunction {
public:
typedef std::function<Real(const Array&)> RealFunc;
typedef std::function<Array(const Array&)> ArrayFunc;
explicit TestFunction(RealFunc f, ArrayFunc fs = ArrayFunc())
: f_(std::move(f)), fs_(std::move(fs)) {}
explicit TestFunction(Real (*f)(const Array&), Array (*fs)(const Array&) = nullptr)
: f_(f), fs_(fs) {}
~TestFunction() override = default;
Real value(const Array& x) const override { return f_(x); }
Array values(const Array& x) const override {
if(!fs_)
throw std::runtime_error("Invalid function");
return fs_(x);
}
private:
RealFunc f_;
ArrayFunc fs_;
};
int test(OptimizationMethod& method, CostFunction& f, const EndCriteria& endCriteria,
const Array& start, const Constraint& constraint = Constraint(),
const Array& optimum = Array()) {
QL_REQUIRE(!start.empty(), "Input size needs to be at least 1");
std::cout << "Starting point: ";
Constraint c;
if (!constraint.empty())
c = constraint;
Problem p(f, c, start);
printFunction(p, start);
method.minimize(p, endCriteria);
std::cout << "End point: ";
Real val = printFunction(p, p.currentValue());
if(!optimum.empty())
{
std::cout << "Global optimum: ";
Real optimVal = printFunction(p, optimum);
if(std::abs(optimVal) < 1e-13)
return static_cast<int>(std::abs(val - optimVal) < 1e-6);
else
return static_cast<int>(std::abs((val - optimVal) / optimVal) < 1e-6);
}
return 1;
}
void testFirefly() {
/*
The Eggholder function is only in 2 dimensions, it has a multitude
* of local minima, and they are not symmetric necessarily
*/
Size n = 2;
NonhomogeneousBoundaryConstraint constraint(Array(n, -512.0), Array(n, 512.0));
Array x(n, 0.0);
Array optimum(n);
optimum[0] = 512.0;
optimum[1] = 404.2319;
Size agents = 150;
Real vola = 1.5;
Real intense = 1.0;
auto intensity = ext::make_shared<ExponentialIntensity>(10.0, 1e-8, intense);
auto randomWalk = ext::make_shared<LevyFlightWalk>(vola, 0.5, 1.0, seed);
std::cout << "Function eggholder, Agents: " << agents
<< ", Vola: " << vola << ", Intensity: " << intense << std::endl;
TestFunction f(eggholder);
FireflyAlgorithm fa(agents, intensity, randomWalk, 40);
EndCriteria ec(5000, 1000, 1.0e-8, 1.0e-8, 1.0e-8);
test(fa, f, ec, x, constraint, optimum);
std::cout << "================================================================" << std::endl;
}
void testSimulatedAnnealing(Size dimension, Size maxSteps, Size staticSteps){
/*The ackley function has a large amount of local minima, but the
structure is symmetric, so if one could simply just ignore the
walls separating the local minima, it would look like almost
like a parabola
Andres Hernandez: I could not find a configuration that was able
to fix the problem
*/
//global minimum is at 0.0
TestFunction f(ackley, ackleyValues);
//Starting point
Array x(dimension, 1.5);
Array optimum(dimension, 0.0);
//Constraint for local optimizer
Array lower(dimension, -5.0);
Array upper(dimension, 5.0);
NonhomogeneousBoundaryConstraint constraint(lower, upper);
Real lambda = 0.1;
Real temperature = 350;
Real epsilon = 0.99;
Size ms = 1000;
std::cout << "Function ackley, Lambda: " << lambda
<< ", Temperature: " << temperature
<< ", Epsilon: " << epsilon
<< ", Iterations: " << ms
<< std::endl;
MersenneTwisterUniformRng rng(seed);
SimulatedAnnealing<MersenneTwisterUniformRng> sa(lambda, temperature, epsilon, ms, rng);
EndCriteria ec(maxSteps, staticSteps, 1.0e-8, 1.0e-8, 1.0e-8);
test(sa, f, ec, x, constraint, optimum);
std::cout << "================================================================" << std::endl;
}
void testGaussianSA(Size dimension,
Size maxSteps,
Size staticSteps,
Real initialTemp,
Real finalTemp,
GaussianSimulatedAnnealing::ResetScheme resetScheme =
GaussianSimulatedAnnealing::ResetToBestPoint,
Size resetSteps = 150,
GaussianSimulatedAnnealing::LocalOptimizeScheme optimizeScheme =
GaussianSimulatedAnnealing::EveryBestPoint,
const ext::shared_ptr<OptimizationMethod>& localOptimizer =
ext::make_shared<LevenbergMarquardt>()) {
/*The ackley function has a large amount of local minima, but the
* structure is symmetric, so if one could simply just ignore the
* walls separating the local minima, it would look like almost like
* a parabola*/
//global minimum is at 0.0
TestFunction f(ackley, ackleyValues);
std::cout << "Function: ackley, Dimensions: " << dimension
<< ", Initial temp:" << initialTemp
<< ", Final temp:" << finalTemp
<< ", Reset scheme:" << resetScheme
<< ", Reset steps:" << resetSteps
<< std::endl;
//Starting point
Array x(dimension, 1.5);
Array optimum(dimension, 0.0);
//Constraint for local optimizer
Array lower(dimension, -5.0);
Array upper(dimension, 5.0);
NonhomogeneousBoundaryConstraint constraint(lower, upper);
//Simulated annealing setup
SamplerGaussian sampler(seed);
ProbabilityBoltzmannDownhill probability(seed);
TemperatureExponential temperature(initialTemp, dimension);
GaussianSimulatedAnnealing sa(sampler, probability, temperature, ReannealingTrivial(),
initialTemp, finalTemp, 50, resetScheme,
resetSteps, localOptimizer,
optimizeScheme);
EndCriteria ec(maxSteps, staticSteps, 1.0e-8, 1.0e-8, 1.0e-8);
test(sa, f, ec, x, constraint, optimum);
std::cout << "================================================================" << std::endl;
}
void testPSO(Size n){
/*The Rosenbrock function has a global minima at (1.0, ...) and a local minima at (-1.0, 1.0, ...)
The difficulty lies in the weird shape of the function*/
NonhomogeneousBoundaryConstraint constraint(Array(n, -1.0), Array(n, 4.0));
Array x(n, 0.0);
Array optimum(n, 1.0);
Size agents = 100;
Size kneighbor = 25;
Size threshold = 500;
std::cout << "Function: rosenbrock, Dimensions: " << n
<< ", Agents: " << agents << ", K-neighbors: " << kneighbor
<< ", Threshold: " << threshold << std::endl;
auto topology = ext::make_shared<KNeighbors>(kneighbor);
auto inertia = ext::make_shared<LevyFlightInertia>(1.5, threshold, seed);
TestFunction f(rosenbrock);
ParticleSwarmOptimization pso(agents, topology, inertia, 2.05, 2.05, seed);
EndCriteria ec(10000, 1000, 1.0e-8, 1.0e-8, 1.0e-8);
test(pso, f, ec, x, constraint, optimum);
std::cout << "================================================================" << std::endl;
}
void testDifferentialEvolution(Size n, Size agents){
/*The Rosenbrock function has a global minima at (1.0, ...) and a local minima at (-1.0, 1.0, ...)
The difficulty lies in the weird shape of the function*/
NonhomogeneousBoundaryConstraint constraint(Array(n, -4.0), Array(n, 4.0));
Array x(n, 0.0);
Array optimum(n, 1.0);
TestFunction f(rosenbrock);
Real probability = 0.3;
Real stepsizeWeight = 0.6;
DifferentialEvolution::Strategy strategy = DifferentialEvolution::BestMemberWithJitter;
std::cout << "Function: rosenbrock, Dimensions: " << n << ", Agents: " << agents
<< ", Probability: " << probability
<< ", StepsizeWeight: " << stepsizeWeight
<< ", Strategy: BestMemberWithJitter" << std::endl;
DifferentialEvolution::Configuration config;
config.withBounds(true)
.withCrossoverProbability(probability)
.withPopulationMembers(agents)
.withStepsizeWeight(stepsizeWeight)
.withStrategy(strategy)
.withSeed(seed);
DifferentialEvolution de(config);
EndCriteria ec(5000, 1000, 1.0e-8, 1.0e-8, 1.0e-8);
test(de, f, ec, x, constraint, optimum);
std::cout << "================================================================" << std::endl;
}
int main(int, char* []) {
try {
std::cout << std::endl;
std::cout << "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
std::cout << "Firefly Algorithm Test" << std::endl;
std::cout << "----------------------------------------------------------------" << std::endl;
testFirefly();
std::cout << "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
std::cout << "Hybrid Simulated Annealing Test" << std::endl;
std::cout << "----------------------------------------------------------------" << std::endl;
testGaussianSA(3, 500, 200, 100.0, 0.1, GaussianSimulatedAnnealing::ResetToBestPoint, 150, GaussianSimulatedAnnealing::EveryNewPoint);
testGaussianSA(10, 500, 200, 100.0, 0.1, GaussianSimulatedAnnealing::ResetToBestPoint, 150, GaussianSimulatedAnnealing::EveryNewPoint);
testGaussianSA(30, 500, 200, 100.0, 0.1, GaussianSimulatedAnnealing::ResetToBestPoint, 150, GaussianSimulatedAnnealing::EveryNewPoint);
std::cout << "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
std::cout << "Particle Swarm Optimization Test" << std::endl;
std::cout << "----------------------------------------------------------------" << std::endl;
testPSO(3);
testPSO(10);
testPSO(30);
std::cout << "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
std::cout << "Simulated Annealing Test" << std::endl;
std::cout << "----------------------------------------------------------------" << std::endl;
testSimulatedAnnealing(3, 10000, 4000);
testSimulatedAnnealing(10, 10000, 4000);
testSimulatedAnnealing(30, 10000, 4000);
std::cout << "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
std::cout << "Differential Evolution Test" << std::endl;
std::cout << "----------------------------------------------------------------" << std::endl;
testDifferentialEvolution(3, 50);
testDifferentialEvolution(10, 150);
testDifferentialEvolution(30, 450);
return 0;
} catch (std::exception& e) {
std::cerr << e.what() << std::endl;
return 1;
} catch (...) {
std::cerr << "unknown error" << std::endl;
return 1;
}
}
|