File: MarketModels.cpp

package info (click to toggle)
quantlib 1.39-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 41,264 kB
  • sloc: cpp: 396,561; makefile: 6,539; python: 272; sh: 154; lisp: 86
file content (806 lines) | stat: -rw-r--r-- 25,430 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*!
Copyright (C) 2009 Mark Joshi

This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/

QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license.  You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/qldefines.hpp>
#if !defined(BOOST_ALL_NO_LIB) && defined(BOOST_MSVC)
#  include <ql/auto_link.hpp>
#endif
#include <ql/models/marketmodels/marketmodel.hpp>
#include <ql/models/marketmodels/accountingengine.hpp>
#include <ql/models/marketmodels/pathwiseaccountingengine.hpp>
#include <ql/models/marketmodels/products/multiproductcomposite.hpp>
#include <ql/models/marketmodels/products/multistep/multistepswap.hpp>
#include <ql/models/marketmodels/products/multistep/callspecifiedmultiproduct.hpp>
#include <ql/models/marketmodels/products/multistep/exerciseadapter.hpp>
#include <ql/models/marketmodels/products/multistep/multistepnothing.hpp>
#include <ql/models/marketmodels/products/multistep/multistepinversefloater.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductswap.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductinversefloater.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductcallspecified.hpp>
#include <ql/models/marketmodels/models/flatvol.hpp>
#include <ql/models/marketmodels/callability/swapratetrigger.hpp>
#include <ql/models/marketmodels/callability/swapbasissystem.hpp>
#include <ql/models/marketmodels/callability/swapforwardbasissystem.hpp>
#include <ql/models/marketmodels/callability/nothingexercisevalue.hpp>
#include <ql/models/marketmodels/callability/collectnodedata.hpp>
#include <ql/models/marketmodels/callability/lsstrategy.hpp>
#include <ql/models/marketmodels/callability/upperboundengine.hpp>
#include <ql/models/marketmodels/correlations/expcorrelations.hpp>
#include <ql/models/marketmodels/browniangenerators/mtbrowniangenerator.hpp>
#include <ql/models/marketmodels/browniangenerators/sobolbrowniangenerator.hpp>
#include <ql/models/marketmodels/evolvers/lognormalfwdratepc.hpp>
#include <ql/models/marketmodels/evolvers/lognormalfwdrateeuler.hpp>
#include <ql/models/marketmodels/pathwisegreeks/bumpinstrumentjacobian.hpp>
#include <ql/models/marketmodels/utilities.hpp>
#include <ql/methods/montecarlo/genericlsregression.hpp>
#include <ql/legacy/libormarketmodels/lmlinexpcorrmodel.hpp>
#include <ql/legacy/libormarketmodels/lmextlinexpvolmodel.hpp>
#include <ql/time/schedule.hpp>
#include <ql/time/calendars/nullcalendar.hpp>
#include <ql/time/daycounters/simpledaycounter.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/math/integrals/segmentintegral.hpp>
#include <ql/math/statistics/convergencestatistics.hpp>
#include <ql/termstructures/volatility/abcd.hpp>
#include <ql/termstructures/volatility/abcdcalibration.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/quotes/simplequote.hpp>
#include <sstream>
#include <iostream>
#include <ctime>

using namespace QuantLib;

std::vector<std::vector<Matrix>>
theVegaBumps(bool factorwiseBumping, const ext::shared_ptr<MarketModel>& marketModel, bool doCaps) {
    Real multiplierCutOff = 50.0;
    Real projectionTolerance = 1E-4;
    Size numberRates= marketModel->numberOfRates();

    std::vector<VolatilityBumpInstrumentJacobian::Cap> caps;

    if (doCaps)
    {

        Rate capStrike = marketModel->initialRates()[0];

        for (Size i=0; i< numberRates-1; i=i+1)
        {
            VolatilityBumpInstrumentJacobian::Cap nextCap;
            nextCap.startIndex_ = i;
            nextCap.endIndex_ = i+1;
            nextCap.strike_ = capStrike;
            caps.push_back(nextCap);
        }


    }



    std::vector<VolatilityBumpInstrumentJacobian::Swaption> swaptions(numberRates);

    for (Size i=0; i < numberRates; ++i)
    {
        swaptions[i].startIndex_ = i;
        swaptions[i].endIndex_ = numberRates;

    }

    VegaBumpCollection possibleBumps(marketModel,
        factorwiseBumping);

    OrthogonalizedBumpFinder  bumpFinder(possibleBumps,
        swaptions,
        caps,
        multiplierCutOff, // if vector length grows by more than this discard
        projectionTolerance);      // if vector projection before scaling less than this discard

    std::vector<std::vector<Matrix>> theBumps;

    bumpFinder.GetVegaBumps(theBumps);

    return theBumps;

}



int Bermudan()
{

    Size numberRates =20;
    Real accrual = 0.5;
    Real firstTime = 0.5;


    std::vector<Real> rateTimes(numberRates+1);
    for (Size i=0; i < rateTimes.size(); ++i)
        rateTimes[i] = firstTime + i*accrual;

    std::vector<Real> paymentTimes(numberRates);
    std::vector<Real> accruals(numberRates,accrual);
    for (Size i=0; i < paymentTimes.size(); ++i)
        paymentTimes[i] = firstTime + (i+1)*accrual;




    Real fixedRate = 0.05;
    std::vector<Real> strikes(numberRates,fixedRate);
    Real receive = -1.0;

    // 0. a payer swap
    MultiStepSwap payerSwap(rateTimes, accruals, accruals, paymentTimes,
        fixedRate, true);

    // 1. the equivalent receiver swap
    MultiStepSwap receiverSwap(rateTimes, accruals, accruals, paymentTimes,
        fixedRate, false);

    //exercise schedule, we can exercise on any rate time except the last one
    std::vector<Rate> exerciseTimes(rateTimes);
    exerciseTimes.pop_back();

    // naive exercise strategy, exercise above a trigger level
    std::vector<Rate> swapTriggers(exerciseTimes.size(), fixedRate);
    SwapRateTrigger naifStrategy(rateTimes, swapTriggers, exerciseTimes);

    // Longstaff-Schwartz exercise strategy
    std::vector<std::vector<NodeData>> collectedData;
    std::vector<std::vector<Real>> basisCoefficients;

    // control that does nothing, need it because some control is expected
    NothingExerciseValue control(rateTimes);

//    SwapForwardBasisSystem basisSystem(rateTimes,exerciseTimes);
    SwapBasisSystem basisSystem(rateTimes,exerciseTimes);



    // rebate that does nothing, need it because some rebate is expected
    // when you break a swap nothing happens.
    NothingExerciseValue nullRebate(rateTimes);

    CallSpecifiedMultiProduct dummyProduct =
        CallSpecifiedMultiProduct(receiverSwap, naifStrategy,
        ExerciseAdapter(nullRebate));

    const EvolutionDescription& evolution = dummyProduct.evolution();


    // parameters for models


    Size seed = 12332; // for Sobol generator
    Size trainingPaths = 65536;
    Size paths = 16384;
    Size vegaPaths = 16384*64;

    std::cout << "training paths, " << trainingPaths << "\n";
    std::cout << "paths, " << paths << "\n";
    std::cout << "vega Paths, " << vegaPaths << "\n";
#ifdef _DEBUG
   trainingPaths = 512;
  paths = 1024;
  vegaPaths = 1024;
#endif


    // set up a calibration, this would typically be done by using a calibrator



    Real rateLevel =0.05;


    Real initialNumeraireValue = 0.95;

    Real volLevel = 0.11;
    Real beta = 0.2;
    Real gamma = 1.0;
    Size numberOfFactors = std::min<Size>(5,numberRates);

    Spread displacementLevel =0.02;

    // set up vectors
    std::vector<Rate> initialRates(numberRates,rateLevel);
    std::vector<Volatility> volatilities(numberRates, volLevel);
    std::vector<Spread> displacements(numberRates, displacementLevel);

    ExponentialForwardCorrelation correlations(
        rateTimes,volLevel, beta,gamma);




    FlatVol  calibration(
        volatilities,
        ext::make_shared<ExponentialForwardCorrelation>(correlations),
        evolution,
        numberOfFactors,
        initialRates,
        displacements);

    auto marketModel = ext::make_shared<FlatVol>(calibration);

    // we use a factory since there is data that will only be known later
    SobolBrownianGeneratorFactory generatorFactory(
        SobolBrownianGenerator::Diagonal, seed);

    std::vector<Size> numeraires( moneyMarketMeasure(evolution));

    // the evolver will actually evolve the rates
    LogNormalFwdRatePc  evolver(marketModel,
        generatorFactory,
        numeraires   // numeraires for each step
        );

    auto evolverPtr = ext::make_shared<LogNormalFwdRatePc>(evolver);

    int t1= clock();

    // gather data before computing exercise strategy
    collectNodeData(evolver,
        receiverSwap,
        basisSystem,
        nullRebate,
        control,
        trainingPaths,
        collectedData);

    int t2 = clock();


    // calculate the exercise strategy's coefficients
    genericLongstaffSchwartzRegression(collectedData,
        basisCoefficients);


    // turn the coefficients into an exercise strategy
    LongstaffSchwartzExerciseStrategy exerciseStrategy(
        basisSystem, basisCoefficients,
        evolution, numeraires,
        nullRebate, control);

    //  bermudan swaption to enter into the payer swap
    CallSpecifiedMultiProduct bermudanProduct =
        CallSpecifiedMultiProduct(
        MultiStepNothing(evolution),
        exerciseStrategy, payerSwap);

    //  callable receiver swap
    CallSpecifiedMultiProduct callableProduct =
        CallSpecifiedMultiProduct(
        receiverSwap, exerciseStrategy,
        ExerciseAdapter(nullRebate));

    // lower bound: evolve all 4 products togheter
    MultiProductComposite allProducts;
    allProducts.add(payerSwap);
    allProducts.add(receiverSwap);
    allProducts.add(bermudanProduct);
    allProducts.add(callableProduct);
    allProducts.finalize();

    AccountingEngine accounter(evolverPtr,
        Clone<MarketModelMultiProduct>(allProducts),
        initialNumeraireValue);

    SequenceStatisticsInc stats;

    accounter.multiplePathValues (stats,paths);

    int t3 = clock();

    std::vector<Real> means(stats.mean());

    for (Real mean : means)
        std::cout << mean << "\n";

    std::cout << " time to build strategy, " << (t2-t1)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";
    std::cout << " time to price, " << (t3-t2)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";

    // vegas

    // do it twice once with factorwise bumping, once without
    Size pathsToDoVegas = vegaPaths;

    for (Size i=0; i < 4; ++i)
    {

        bool allowFactorwiseBumping = i % 2 > 0 ;

        bool doCaps = i / 2 > 0 ;





        LogNormalFwdRateEuler evolverEuler(marketModel,
            generatorFactory,
            numeraires
            ) ;

        MarketModelPathwiseSwap receiverPathwiseSwap(  rateTimes,
            accruals,
            strikes,
            receive);
        Clone<MarketModelPathwiseMultiProduct> receiverPathwiseSwapPtr(receiverPathwiseSwap.clone());

        //  callable receiver swap
        CallSpecifiedPathwiseMultiProduct callableProductPathwise(receiverPathwiseSwapPtr,
            exerciseStrategy);

        Clone<MarketModelPathwiseMultiProduct> callableProductPathwisePtr(callableProductPathwise.clone());


        std::vector<std::vector<Matrix>> theBumps(theVegaBumps(allowFactorwiseBumping,
            marketModel,
            doCaps));

        PathwiseVegasOuterAccountingEngine
            accountingEngineVegas(ext::make_shared<LogNormalFwdRateEuler>(evolverEuler),
            callableProductPathwisePtr,
            marketModel,
            theBumps,
            initialNumeraireValue);

        std::vector<Real> values,errors;

        accountingEngineVegas.multiplePathValues(values,errors,pathsToDoVegas);


        std::cout << "vega output \n";
        std::cout << " factorwise bumping " << allowFactorwiseBumping << "\n";
        std::cout << " doCaps " << doCaps << "\n";



        Size r=0;

        std::cout << " price estimate, " << values[r++] << "\n";

        for (Size i=0; i < numberRates; ++i, ++r)
            std::cout << " Delta, " << i << ", " << values[r] << ", " << errors[r] << "\n";

        Real totalVega = 0.0;

        for (; r < values.size(); ++r)
        {
            std::cout << " vega, " << r - 1 -  numberRates<< ", " << values[r] << " ," << errors[r] << "\n";
            totalVega +=  values[r];
        }

        std::cout << " total Vega, " << totalVega << "\n";
    }

    // upper bound

    MTBrownianGeneratorFactory uFactory(seed+142);

    auto upperEvolver = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
            uFactory,
            numeraires   // numeraires for each step
            );

    std::vector<ext::shared_ptr<MarketModelEvolver>> innerEvolvers;

    std::valarray<bool> isExerciseTime =   isInSubset(evolution.evolutionTimes(),    exerciseStrategy.exerciseTimes());

    for (Size s=0; s < isExerciseTime.size(); ++s)
    {
        if (isExerciseTime[s])
        {
            MTBrownianGeneratorFactory iFactory(seed+s);
            auto e = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
                    uFactory,
                    numeraires,  // numeraires for each step
                    s);

            innerEvolvers.push_back(e);
        }
    }



    UpperBoundEngine uEngine(upperEvolver,  // does outer paths
                             innerEvolvers, // for sub-simulations that do continuation values
                             receiverSwap,
                             nullRebate,
                             receiverSwap,
                             nullRebate,
                             exerciseStrategy,
                             initialNumeraireValue);

    Statistics uStats;
    Size innerPaths = 255;
    Size outerPaths =256;

    int t4 = clock();

    uEngine.multiplePathValues(uStats,outerPaths,innerPaths);
    Real upperBound = uStats.mean();
    Real upperSE = uStats.errorEstimate();

    int t5=clock();

    std::cout << " Upper - lower is, " << upperBound << ", with standard error " << upperSE << "\n";
    std::cout << " time to compute upper bound is,  " << (t5-t4)/static_cast<Real>(CLOCKS_PER_SEC) << ", seconds.\n";

    return 0;
}

int InverseFloater(Real rateLevel)
{

    Size numberRates =20;
    Real accrual = 0.5;
    Real firstTime = 0.5;

    Real strike =0.15;
    Real fixedMultiplier = 2.0;
    Real floatingSpread =0.0;
    bool payer = true;


    std::vector<Real> rateTimes(numberRates+1);
    for (Size i=0; i < rateTimes.size(); ++i)
        rateTimes[i] = firstTime + i*accrual;

    std::vector<Real> paymentTimes(numberRates);
    std::vector<Real> accruals(numberRates,accrual);
    std::vector<Real> fixedStrikes(numberRates,strike);
    std::vector<Real> floatingSpreads(numberRates,floatingSpread);
    std::vector<Real> fixedMultipliers(numberRates,fixedMultiplier);

    for (Size i=0; i < paymentTimes.size(); ++i)
        paymentTimes[i] = firstTime + (i+1)*accrual;

  MultiStepInverseFloater inverseFloater(
                                                        rateTimes,
                                                        accruals,
                                                         accruals,
                                                        fixedStrikes,
                                                        fixedMultipliers,
                                                        floatingSpreads,
                                                         paymentTimes,
                                                         payer);




    //exercise schedule, we can exercise on any rate time except the last one
    std::vector<Rate> exerciseTimes(rateTimes);
    exerciseTimes.pop_back();

    // naive exercise strategy, exercise above a trigger level
    Real trigger =0.05;
    std::vector<Rate> swapTriggers(exerciseTimes.size(), trigger);
    SwapRateTrigger naifStrategy(rateTimes, swapTriggers, exerciseTimes);

    // Longstaff-Schwartz exercise strategy
    std::vector<std::vector<NodeData>> collectedData;
    std::vector<std::vector<Real>> basisCoefficients;

    // control that does nothing, need it because some control is expected
    NothingExerciseValue control(rateTimes);

   SwapForwardBasisSystem basisSystem(rateTimes,exerciseTimes);
//    SwapBasisSystem basisSystem(rateTimes,exerciseTimes);



    // rebate that does nothing, need it because some rebate is expected
    // when you break a swap nothing happens.
    NothingExerciseValue nullRebate(rateTimes);

    CallSpecifiedMultiProduct dummyProduct =
        CallSpecifiedMultiProduct(inverseFloater, naifStrategy,
        ExerciseAdapter(nullRebate));

    const EvolutionDescription& evolution = dummyProduct.evolution();


    // parameters for models


    Size seed = 12332; // for Sobol generator
    Size trainingPaths = 65536;
    Size paths = 65536;
    Size vegaPaths =16384;

#ifdef _DEBUG
   trainingPaths = 8192;
  paths = 8192;
  vegaPaths = 1024;
#endif


    std::cout <<  " inverse floater \n";
    std::cout << " fixed strikes :  "  << strike << "\n";
    std::cout << " number rates :  " << numberRates << "\n";

    std::cout << "training paths, " << trainingPaths << "\n";
    std::cout << "paths, " << paths << "\n";
    std::cout << "vega Paths, " << vegaPaths << "\n";


    // set up a calibration, this would typically be done by using a calibrator



    //Real rateLevel =0.08;

    std::cout << " rate level " <<  rateLevel << "\n";

    Real initialNumeraireValue = 0.95;

    Real volLevel = 0.11;
    Real beta = 0.2;
    Real gamma = 1.0;
    Size numberOfFactors = std::min<Size>(5,numberRates);

    Spread displacementLevel =0.02;

    // set up vectors
    std::vector<Rate> initialRates(numberRates,rateLevel);
    std::vector<Volatility> volatilities(numberRates, volLevel);
    std::vector<Spread> displacements(numberRates, displacementLevel);

    ExponentialForwardCorrelation correlations(
        rateTimes,volLevel, beta,gamma);




    FlatVol  calibration(
        volatilities,
        ext::make_shared<ExponentialForwardCorrelation>(correlations),
        evolution,
        numberOfFactors,
        initialRates,
        displacements);

    auto marketModel = ext::make_shared<FlatVol>(calibration);

    // we use a factory since there is data that will only be known later
    SobolBrownianGeneratorFactory generatorFactory(
        SobolBrownianGenerator::Diagonal, seed);

    std::vector<Size> numeraires( moneyMarketMeasure(evolution));

    // the evolver will actually evolve the rates
    LogNormalFwdRatePc  evolver(marketModel,
        generatorFactory,
        numeraires   // numeraires for each step
        );

    auto evolverPtr = ext::make_shared<LogNormalFwdRatePc>(evolver);

    int t1= clock();

    // gather data before computing exercise strategy
    collectNodeData(evolver,
        inverseFloater,
        basisSystem,
        nullRebate,
        control,
        trainingPaths,
        collectedData);

    int t2 = clock();


    // calculate the exercise strategy's coefficients
    genericLongstaffSchwartzRegression(collectedData,
        basisCoefficients);


    // turn the coefficients into an exercise strategy
    LongstaffSchwartzExerciseStrategy exerciseStrategy(
        basisSystem, basisCoefficients,
        evolution, numeraires,
        nullRebate, control);


    //  callable receiver swap
    CallSpecifiedMultiProduct callableProduct =
        CallSpecifiedMultiProduct(
        inverseFloater, exerciseStrategy,
        ExerciseAdapter(nullRebate));

     MultiProductComposite allProducts;
    allProducts.add(inverseFloater);
    allProducts.add(callableProduct);
    allProducts.finalize();


    AccountingEngine accounter(evolverPtr,
        Clone<MarketModelMultiProduct>(allProducts),
        initialNumeraireValue);

    SequenceStatisticsInc stats;

    accounter.multiplePathValues (stats,paths);

    int t3 = clock();

    std::vector<Real> means(stats.mean());

    for (Real mean : means)
        std::cout << mean << "\n";

    std::cout << " time to build strategy, " << (t2-t1)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";
    std::cout << " time to price, " << (t3-t2)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";

    // vegas

    // do it twice once with factorwise bumping, once without
    Size pathsToDoVegas = vegaPaths;

    for (Size i=0; i < 4; ++i)
    {

        bool allowFactorwiseBumping = i % 2 > 0 ;

        bool doCaps = i / 2 > 0 ;


        LogNormalFwdRateEuler evolverEuler(marketModel,
            generatorFactory,
            numeraires
            ) ;

        MarketModelPathwiseInverseFloater pathwiseInverseFloater(
                                                         rateTimes,
                                                         accruals,
                                                         accruals,
                                                         fixedStrikes,
                                                         fixedMultipliers,
                                                         floatingSpreads,
                                                         paymentTimes,
                                                         payer);

        Clone<MarketModelPathwiseMultiProduct> pathwiseInverseFloaterPtr(pathwiseInverseFloater.clone());

        //  callable inverse floater
        CallSpecifiedPathwiseMultiProduct callableProductPathwise(pathwiseInverseFloaterPtr,
                                                                                                                                               exerciseStrategy);

        Clone<MarketModelPathwiseMultiProduct> callableProductPathwisePtr(callableProductPathwise.clone());


        std::vector<std::vector<Matrix>> theBumps(theVegaBumps(allowFactorwiseBumping,
            marketModel,
            doCaps));

        PathwiseVegasOuterAccountingEngine
            accountingEngineVegas(ext::make_shared<LogNormalFwdRateEuler>(evolverEuler),
   //         pathwiseInverseFloaterPtr,
            callableProductPathwisePtr,
            marketModel,
            theBumps,
            initialNumeraireValue);

        std::vector<Real> values,errors;

        accountingEngineVegas.multiplePathValues(values,errors,pathsToDoVegas);


        std::cout << "vega output \n";
        std::cout << " factorwise bumping " << allowFactorwiseBumping << "\n";
        std::cout << " doCaps " << doCaps << "\n";



        Size r=0;

        std::cout << " price estimate, " << values[r++] << "\n";

        for (Size i=0; i < numberRates; ++i, ++r)
            std::cout << " Delta, " << i << ", " << values[r] << ", " << errors[r] << "\n";

        Real totalVega = 0.0;

        for (; r < values.size(); ++r)
        {
            std::cout << " vega, " << r - 1 -  numberRates<< ", " << values[r] << " ," << errors[r] << "\n";
            totalVega +=  values[r];
        }

        std::cout << " total Vega, " << totalVega << "\n";
    }

    // upper bound

    MTBrownianGeneratorFactory uFactory(seed+142);


    auto upperEvolver = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
            uFactory,
            numeraires   // numeraires for each step
            );

    std::vector<ext::shared_ptr<MarketModelEvolver>> innerEvolvers;

    std::valarray<bool> isExerciseTime =   isInSubset(evolution.evolutionTimes(),    exerciseStrategy.exerciseTimes());

    for (Size s=0; s < isExerciseTime.size(); ++s)
    {
        if (isExerciseTime[s])
        {
            MTBrownianGeneratorFactory iFactory(seed+s);
            auto e = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
                    uFactory,
                    numeraires ,  // numeraires for each step
                    s);

            innerEvolvers.push_back(e);
        }
    }



    UpperBoundEngine uEngine(upperEvolver,  // does outer paths
                             innerEvolvers, // for sub-simulations that do continuation values
                             inverseFloater,
                             nullRebate,
                             inverseFloater,
                             nullRebate,
                             exerciseStrategy,
                             initialNumeraireValue);

    Statistics uStats;
    Size innerPaths = 255;
    Size outerPaths =256;

    int t4 = clock();

    uEngine.multiplePathValues(uStats,outerPaths,innerPaths);
    Real upperBound = uStats.mean();
    Real upperSE = uStats.errorEstimate();

    int t5=clock();

    std::cout << " Upper - lower is, " << upperBound << ", with standard error " << upperSE << "\n";
    std::cout << " time to compute upper bound is,  " << (t5-t4)/static_cast<Real>(CLOCKS_PER_SEC) << ", seconds.\n";


    return 0;

}

int main()
{
    try {
        for (Size i=5; i < 10; ++i)
            InverseFloater(i/100.0);

        return 0;
    } catch (std::exception& e) {
        std::cerr << e.what() << std::endl;
        return 1;
    } catch (...) {
        std::cerr << "unknown error" << std::endl;
        return 1;
    }
}