File: basismodels.cpp

package info (click to toggle)
quantlib 1.39-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,264 kB
  • sloc: cpp: 396,561; makefile: 6,539; python: 272; sh: 154; lisp: 86
file content (402 lines) | stat: -rw-r--r-- 22,670 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2018 Sebastian Schlenkrich

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/cashflows/iborcoupon.hpp>
#include <ql/compounding.hpp>
#include <ql/experimental/basismodels/swaptioncfs.hpp>
#include <ql/experimental/basismodels/tenoroptionletvts.hpp>
#include <ql/experimental/basismodels/tenorswaptionvts.hpp>
#include <ql/indexes/ibor/euribor.hpp>
#include <ql/instruments/vanillaswap.hpp>
#include <ql/instruments/swaption.hpp>
#include <ql/pricingengines/swap/discountingswapengine.hpp>
#include <ql/termstructures/volatility/optionlet/strippedoptionlet.hpp>
#include <ql/termstructures/volatility/optionlet/strippedoptionletadapter.hpp>
#include <ql/termstructures/volatility/swaption/swaptionvolmatrix.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/math/interpolations/cubicinterpolation.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/time/daycounters/thirty360.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(BasisModelsTests)

// auxiliary data
Period termsData[] = {
    Period(0, Days),   Period(1, Years), Period(2, Years),  Period(3, Years),
    Period(5, Years),  Period(7, Years), Period(10, Years), Period(15, Years),
    Period(20, Years), Period(61, Years) // avoid extrapolation issues with 30y caplets
};
std::vector<Period> terms(termsData, termsData + 10);

Real discRatesData[] = {-0.00147407, -0.001761684, -0.001736745, -0.00119244, 0.000896055,
                        0.003537077, 0.007213824,  0.011391278,  0.013334611, 0.013982809};
std::vector<Real> discRates(discRatesData, discRatesData + 10);

Real proj3mRatesData[] = {-0.000483439, -0.000578569, -0.000383832, 0.000272656, 0.002478699,
                          0.005100113,  0.008750643,  0.012788095,  0.014534052, 0.014942896};
std::vector<Real> proj3mRates(proj3mRatesData, proj3mRatesData + 10);

Real proj6mRatesData[] = {0.000233608, 0.000218862, 0.000504018, 0.001240556, 0.003554415,
                          0.006153921, 0.009688264, 0.013521628, 0.015136391, 0.015377704};
std::vector<Real> proj6mRates(proj6mRatesData, proj6mRatesData + 10);

Handle<YieldTermStructure> getYTS(const std::vector<Period>& terms,
                                  const std::vector<Real>& rates,
                                  const Real spread = 0.0) {
    Date today = Settings::instance().evaluationDate();
    std::vector<Date> dates;
    dates.reserve(terms.size());
    for (auto term : terms)
        dates.push_back(NullCalendar().advance(today, term, Unadjusted));
    std::vector<Real> ratesPlusSpread(rates);
    for (Real& k : ratesPlusSpread)
        k += spread;
    ext::shared_ptr<YieldTermStructure> ts =
        ext::shared_ptr<YieldTermStructure>(new InterpolatedZeroCurve<Cubic>(
                dates, ratesPlusSpread, Actual365Fixed(), NullCalendar()));
    return RelinkableHandle<YieldTermStructure>(ts);
}

Period capletTermsData[] = {Period(1, Years),  Period(2, Years),  Period(3, Years),
                            Period(5, Years),  Period(7, Years),  Period(10, Years),
                            Period(15, Years), Period(20, Years), Period(25, Years),
                            Period(30, Years)};
std::vector<Period> capletTerms(capletTermsData, capletTermsData + 10);

Real capletStrikesData[] = {-0.0050, 0.0000, 0.0050, 0.0100, 0.0150, 0.0200, 0.0300, 0.0500};
std::vector<Real> capletStrikes(capletStrikesData, capletStrikesData + 8);


Handle<OptionletVolatilityStructure> getOptionletTS() {
    Date today = Settings::instance().evaluationDate();
    std::vector<Date> dates;
    dates.reserve(capletTerms.size());
    for (auto& capletTerm : capletTerms)
        dates.push_back(TARGET().advance(today, capletTerm, Following));
    // set up vol data manually
    std::vector<std::vector<Real> > capletVols =
        {
            {0.003010094, 0.002628065, 0.00456118,  0.006731268, 0.008678572, 0.010570881, 0.014149552, 0.021000638},
            {0.004173715, 0.003727039, 0.004180263, 0.005726083, 0.006905876, 0.008263514, 0.010555395, 0.014976523},
            {0.005870143, 0.005334526, 0.005599775, 0.006633987, 0.007773317, 0.009036581, 0.011474391, 0.016277549},
            {0.007458597, 0.007207522, 0.007263995, 0.007308727, 0.007813586, 0.008274858, 0.009743988, 0.012555171},
            {0.007711531, 0.007608826, 0.007572816, 0.007684107, 0.007971932, 0.008283118, 0.009268828, 0.011574083},
            {0.007619605, 0.007639059, 0.007719825, 0.007823373, 0.00800813,  0.008113384, 0.008616374, 0.009785436},
            {0.007312199, 0.007352993, 0.007369116, 0.007468333, 0.007515657, 0.00767695,  0.008020447, 0.009072769},
            {0.006905851, 0.006966315, 0.007056413, 0.007116494, 0.007259661, 0.00733308,  0.007667563, 0.008419696},
            {0.006529553, 0.006630731, 0.006749022, 0.006858027, 0.007001959, 0.007139097, 0.007390404, 0.008036255},
            {0.006225482, 0.006404012, 0.00651594,  0.006642273, 0.006640887, 0.006885713, 0.007093024, 0.00767373}
        };
    // create quotes
    std::vector<std::vector<Handle<Quote> > > capletVolQuotes;
    for (auto& capletVol : capletVols) {
        std::vector<Handle<Quote> > row;
        row.reserve(capletVol.size());
        for (Real j : capletVol)
            row.push_back(RelinkableHandle<Quote>(ext::shared_ptr<Quote>(new SimpleQuote(j))));
        capletVolQuotes.push_back(row);
    }
    Handle<YieldTermStructure> curve3m = getYTS(terms, proj3mRates);
    ext::shared_ptr<IborIndex> index(new Euribor3M(curve3m));
    ext::shared_ptr<StrippedOptionletBase> tmp1(
            new StrippedOptionlet(2, TARGET(), Following, index, dates, capletStrikes,
                                  capletVolQuotes, Actual365Fixed(), Normal, 0.0));
    ext::shared_ptr<StrippedOptionletAdapter> tmp2(new StrippedOptionletAdapter(tmp1));
    return RelinkableHandle<OptionletVolatilityStructure>(tmp2);
}

Period swaptionVTSTermsData[] = {
    Period(1, Years), Period(5, Years), Period(10, Years), Period(20, Years), Period(30, Years),
};
std::vector<Period> swaptionVTSTerms(swaptionVTSTermsData, swaptionVTSTermsData + 5);

Handle<SwaptionVolatilityStructure> getSwaptionVTS() {
    std::vector<std::vector<Real> > swaptionVols =
        {
            {0.002616, 0.00468, 0.0056, 0.005852, 0.005823},
            {0.006213, 0.00643, 0.006622, 0.006124, 0.005958},
            {0.006658, 0.006723, 0.006602, 0.005802, 0.005464},
            {0.005728, 0.005814, 0.005663, 0.004689, 0.004276},
            {0.005041, 0.005059, 0.004746, 0.003927, 0.003608}
        };
    std::vector<std::vector<Handle<Quote> > > swaptionVolQuotes;
    for (auto& swaptionVol : swaptionVols) {
        std::vector<Handle<Quote> > row;
        row.reserve(swaptionVol.size());
        for (Real j : swaptionVol)
            row.push_back(RelinkableHandle<Quote>(ext::shared_ptr<Quote>(new SimpleQuote(j))));
        swaptionVolQuotes.push_back(row);
    }
    ext::shared_ptr<SwaptionVolatilityStructure> tmp(
            new SwaptionVolatilityMatrix(TARGET(), Following, swaptionVTSTerms, swaptionVTSTerms,
                                         swaptionVolQuotes, Actual365Fixed(), true, Normal));
    return RelinkableHandle<SwaptionVolatilityStructure>(tmp);
}

void testSwaptioncfs(bool contTenorSpread) {
    bool usingAtParCoupons = IborCoupon::Settings::instance().usingAtParCoupons();
    // market data and floating rate index
    Handle<YieldTermStructure> discYTS = getYTS(terms, discRates);
    Handle<YieldTermStructure> proj6mYTS = getYTS(terms, proj6mRates);
    ext::shared_ptr<IborIndex> euribor6m(new Euribor6M(proj6mYTS));
    // Vanilla swap details
    Date today = Settings::instance().evaluationDate();
    Date swapStart = TARGET().advance(today, Period(5, Years), Following);
    Date swapEnd = TARGET().advance(swapStart, Period(10, Years), Following);
    Date exerciseDate = TARGET().advance(swapStart, Period(-2, Days), Preceding);
    Schedule fixedSchedule(swapStart, swapEnd, Period(1, Years), TARGET(), ModifiedFollowing,
                           ModifiedFollowing, DateGeneration::Backward, false);
    Schedule floatSchedule(swapStart, swapEnd, Period(6, Months), TARGET(), ModifiedFollowing,
                           ModifiedFollowing, DateGeneration::Backward, false);
    ext::shared_ptr<VanillaSwap> swap(
            new VanillaSwap(Swap::Payer, 10000.0, fixedSchedule, 0.03, Thirty360(Thirty360::BondBasis),
                            floatSchedule, euribor6m, 0.0, euribor6m->dayCounter()));
    swap->setPricingEngine(ext::shared_ptr<PricingEngine>(new DiscountingSwapEngine(discYTS)));
    // European exercise and swaption
    ext::shared_ptr<Exercise> europeanExercise(new EuropeanExercise(exerciseDate));
    ext::shared_ptr<Swaption> swaption(
                                       new Swaption(swap, europeanExercise, Settlement::Physical));
    // calculate basis model swaption cash flows, discount and conmpare with swap
    SwaptionCashFlows cashFlows(swaption, discYTS, contTenorSpread);
    // model time is always Act365Fixed
    Time exerciseTime = Actual365Fixed().yearFraction(discYTS->referenceDate(),
                                                      swaption->exercise()->dates()[0]);
    if (exerciseTime != cashFlows.exerciseTimes()[0])
        BOOST_ERROR("Swaption cash flow exercise time does not coincide with manual calculation");
    // there might be rounding errors
    Real tol = 1.0e-8;
    // (discounted) fixed leg coupons must match swap fixed leg NPV
    Real fixedLeg = 0.0;
    for (Size k = 0; k < cashFlows.fixedTimes().size(); ++k)
        fixedLeg += cashFlows.fixedWeights()[k] * discYTS->discount(cashFlows.fixedTimes()[k]);
    if (fabs(fixedLeg - (-swap->fixedLegNPV())) > tol) // note, '-1' because payer swap
        BOOST_ERROR("Swaption cash flow fixed leg NPV does not match Vanillaswap fixed leg NPV"
                    << "SwaptionCashFlows: " << fixedLeg << "\n"
                    << "swap->fixedLegNPV: " << swap->fixedLegNPV() << "\n"
                    << "Variance:          " << swap->fixedLegNPV() - fixedLeg << "\n");
    // (discounted) floating leg coupons must match swap floating leg NPV
    Real floatLeg = 0.0;
    for (Size k = 0; k < cashFlows.floatTimes().size(); ++k)
        floatLeg += cashFlows.floatWeights()[k] * discYTS->discount(cashFlows.floatTimes()[k]);
    if (fabs(floatLeg - swap->floatingLegNPV()) > tol)
        BOOST_ERROR(
                    "Swaption cash flow floating leg NPV does not match Vanillaswap floating leg NPV.\n"
                    << "SwaptionCashFlows:    " << floatLeg << "\n"
                    << "swap->floatingLegNPV: " << swap->floatingLegNPV() << "\n"
                    << "Variance:             " << swap->floatingLegNPV() - floatLeg << "\n");
    // There should not be spread coupons in a single-curve setting.
    // However, if indexed coupons are used the floating leg is not at par,
    // so we need to relax the tolerance to a level at which it will only
    // catch large errors.
    Real tol2 = usingAtParCoupons ? tol : 0.02;

    SwaptionCashFlows singleCurveCashFlows(swaption, proj6mYTS, contTenorSpread);
    for (Size k = 1; k < singleCurveCashFlows.floatWeights().size() - 1; ++k) {
        if (fabs(singleCurveCashFlows.floatWeights()[k]) > tol2)
            BOOST_ERROR("Swaption cash flow floating leg spread does not vanish in "
                        "single-curve setting.\n"
                        << "Cash flow index k: " << k << ", floatWeights: "
                        << singleCurveCashFlows.floatWeights()[k] << "\n");
    }
}


BOOST_AUTO_TEST_CASE(testSwaptioncfsContCompSpread) {
    BOOST_TEST_MESSAGE(
        "Testing deterministic tenor basis model with continuous compounded spreads...");
    testSwaptioncfs(true);
}

BOOST_AUTO_TEST_CASE(testSwaptioncfsSimpleCompSpread) {
    BOOST_TEST_MESSAGE("Testing deterministic tenor basis model with simple compounded spreads...");
    testSwaptioncfs(false);
}

BOOST_AUTO_TEST_CASE(testTenoroptionletvts) {
    BOOST_TEST_MESSAGE("Testing volatility transformation for caplets/floorlets...");
    // market data and floating rate index
    Real spread = 0.01;
    Handle<YieldTermStructure> discYTS = getYTS(terms, discRates);
    Handle<YieldTermStructure> proj3mYTS = getYTS(terms, proj3mRates);
    Handle<YieldTermStructure> proj6mYTS = getYTS(terms, proj3mRates, spread);
    ext::shared_ptr<IborIndex> euribor3m(new Euribor6M(proj3mYTS));
    ext::shared_ptr<IborIndex> euribor6m(new Euribor6M(proj6mYTS));
    // 3m optionlet VTS
    Handle<OptionletVolatilityStructure> optionletVTS3m = getOptionletTS();
    {
        // we need a correlation structure
        Real corrTimesRaw[] = {0.0, 50.0};
        Real rhoInfDataRaw[] = {0.3, 0.3};
        Real betaDataRaw[] = {0.9, 0.9};
        std::vector<Real> corrTimes(corrTimesRaw, corrTimesRaw + 2);
        std::vector<Real> rhoInfData(rhoInfDataRaw, rhoInfDataRaw + 2);
        std::vector<Real> betaData(betaDataRaw, betaDataRaw + 2);
        ext::shared_ptr<Interpolation> rho(
            new LinearInterpolation(corrTimes.begin(), corrTimes.end(), rhoInfData.begin()));
        ext::shared_ptr<Interpolation> beta(
            new LinearInterpolation(corrTimes.begin(), corrTimes.end(), betaData.begin()));
        ext::shared_ptr<TenorOptionletVTS::CorrelationStructure> corr(
            new TenorOptionletVTS::TwoParameterCorrelation(rho, beta));
        // now we can set up the new volTS and calculate volatilities
        ext::shared_ptr<OptionletVolatilityStructure> optionletVTS6m(
            new TenorOptionletVTS(optionletVTS3m, euribor3m, euribor6m, corr));
        for (auto& capletTerm : capletTerms) {
            for (Real& capletStrike : capletStrikes) {
                Real vol3m = optionletVTS3m->volatility(capletTerm, capletStrike, true);
                Real vol6m = optionletVTS6m->volatility(capletTerm, capletStrike, true);
                Real vol6mShifted =
                    optionletVTS6m->volatility(capletTerm, capletStrike + spread, true);
                // De-correlation yields that larger tenor shifted vols are smaller then shorter
                // tenor vols
                if (vol6mShifted - vol3m >
                    0.0001) // we leave 1bp tolerance due to simplified spread calculation
                    BOOST_ERROR("Shifted 6m vol significantly larger then 3m vol at\n"
                                << "expiry term: " << capletTerm << ", strike: " << capletStrike
                                << "\n"
                                << "vol3m: " << vol3m << ", vol6m: " << vol6m
                                << ", vol6mShifted: " << vol6mShifted << "\n");
            }
        }
    }
    {
        // we need a correlation structure
        Real corrTimesRaw[] = {0.0, 50.0};
        Real rhoInfDataRaw[] = {0.0, 0.0};
        Real betaDataRaw[] = {0.0, 0.0};
        std::vector<Real> corrTimes(corrTimesRaw, corrTimesRaw + 2);
        std::vector<Real> rhoInfData(rhoInfDataRaw, rhoInfDataRaw + 2);
        std::vector<Real> betaData(betaDataRaw, betaDataRaw + 2);
        ext::shared_ptr<Interpolation> rho(
            new LinearInterpolation(corrTimes.begin(), corrTimes.end(), rhoInfData.begin()));
        ext::shared_ptr<Interpolation> beta(
            new LinearInterpolation(corrTimes.begin(), corrTimes.end(), betaData.begin()));
        ext::shared_ptr<TenorOptionletVTS::CorrelationStructure> corr(
            new TenorOptionletVTS::TwoParameterCorrelation(rho, beta));
        // now we can set up the new volTS and calculate volatilities
        ext::shared_ptr<OptionletVolatilityStructure> optionletVTS6m(
            new TenorOptionletVTS(optionletVTS3m, euribor3m, euribor6m, corr));
        for (Size i = 0; i < capletTerms.size(); ++i) {
            for (Real& capletStrike : capletStrikes) {
                Real vol3m = optionletVTS3m->volatility(capletTerms[i], capletStrike, true);
                Real vol6m = optionletVTS6m->volatility(capletTerms[i], capletStrike, true);
                Real vol6mShifted =
                    optionletVTS6m->volatility(capletTerms[i], capletStrike + spread, true);
                // for perfect correlation shifted 6m vols should coincide with 3m vols
                Real tol =
                    (i < 3) ? (0.001) :
                              (0.0001); // 10bp tol for smaller tenors and 1bp tol for larger tenors
                if (fabs(vol6mShifted - vol3m) > tol)
                    BOOST_ERROR("Shifted 6m vol does not match 3m vol for perfect correlation at\n"
                                << "expiry term: " << capletTerms[i] << ", strike: " << capletStrike
                                << "\n"
                                << "vol3m: " << vol3m << ", vol6m: " << vol6m
                                << ", vol6mShifted: " << vol6mShifted << "\n");
            }
        }
    }
}

BOOST_AUTO_TEST_CASE(testTenorswaptionvts) {
    BOOST_TEST_MESSAGE("Testing volatility transformation for swaptions...");
    // market data and floating rate index
    Real spread = 0.01;
    Handle<YieldTermStructure> discYTS = getYTS(terms, discRates);
    Handle<YieldTermStructure> proj3mYTS = getYTS(terms, proj3mRates);
    Handle<YieldTermStructure> proj6mYTS = getYTS(terms, proj3mRates, spread);
    ext::shared_ptr<IborIndex> euribor3m(new Euribor6M(proj3mYTS));
    ext::shared_ptr<IborIndex> euribor6m(new Euribor6M(proj6mYTS));
    // Euribor6m ATM vols
    Handle<SwaptionVolatilityStructure> euribor6mSwVTS = getSwaptionVTS();
    {
        ext::shared_ptr<TenorSwaptionVTS> euribor3mSwVTS(
            new TenorSwaptionVTS(euribor6mSwVTS, discYTS, euribor6m, euribor3m, Period(1, Years),
                                 Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
        // 6m vols should be slightly larger then 3m vols due to basis
        for (Size i = 0; i < swaptionVTSTerms.size(); ++i) {
            for (Size j = 0; j < swaptionVTSTerms.size(); ++j) {
                Real vol6m = euribor6mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
                                                        0.01, true);
                Real vol3m = euribor3mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
                                                        0.01, true);
                if (vol3m > vol6m)
                    BOOST_ERROR("Euribor 6m must be larger than 3m vol at\n"
                                << "expiry term: " << swaptionVTSTerms[i]
                                << ", swap term: " << swaptionVTSTerms[j] << "\n"
                                << "vol3m: " << vol3m << ", vol6m: " << vol6m << "\n");
            }
        }
    }
    {
        ext::shared_ptr<TenorSwaptionVTS> euribor6mSwVTS2(
            new TenorSwaptionVTS(euribor6mSwVTS, discYTS, euribor6m, euribor6m, Period(1, Years),
                                 Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
        // 6m vols to 6m vols should yield initiial vols
        for (Size i = 0; i < swaptionVTSTerms.size(); ++i) {
            for (Size j = 0; j < swaptionVTSTerms.size(); ++j) {
                Real vol6m = euribor6mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
                                                        0.01, true);
                Real vol6m2 = euribor6mSwVTS2->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
                                                          0.01, true);
                Real tol = 1.0e-8;
                if (fabs(vol6m2 - vol6m) > tol)
                    BOOST_ERROR("Euribor 6m to 6m vols should not change at\n"
                                << "expiry term: " << swaptionVTSTerms[i]
                                << ", swap term: " << swaptionVTSTerms[j] << "\n"
                                << "vol6m: " << vol6m << ", vol6m2: " << vol6m2
                                << ", variance: " << (vol6m2 - vol6m) << "\n");
            }
        }
    }
    {
        ext::shared_ptr<TenorSwaptionVTS> euribor3mSwVTS(
            new TenorSwaptionVTS(euribor6mSwVTS, discYTS, euribor6m, euribor3m, Period(1, Years),
                                 Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
        ext::shared_ptr<TenorSwaptionVTS> euribor6mSwVTS2(new TenorSwaptionVTS(
            RelinkableHandle<SwaptionVolatilityStructure>(euribor3mSwVTS), discYTS, euribor3m,
            euribor6m, Period(1, Years), Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
        // 6m vols to 6m vols should yield initiial vols
        for (Size i = 0; i < swaptionVTSTerms.size(); ++i) {
            for (Size j = 0; j < swaptionVTSTerms.size(); ++j) {
                Real vol6m = euribor6mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
                                                        0.01, true);
                Real vol6m2 = euribor6mSwVTS2->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
                                                          0.01, true);
                Real tol = 1.0e-8;
                if (fabs(vol6m2 - vol6m) > tol)
                    BOOST_ERROR("Euribor 6m to 3m to 6m vols should not change at\n"
                                << "expiry term: " << swaptionVTSTerms[i]
                                << ", swap term: " << swaptionVTSTerms[j] << "\n"
                                << "vol6m: " << vol6m << ", vol6m2: " << vol6m2
                                << ", variance: " << (vol6m2 - vol6m) << "\n");
            }
        }
    }
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()