1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2018 Sebastian Schlenkrich
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/cashflows/iborcoupon.hpp>
#include <ql/compounding.hpp>
#include <ql/experimental/basismodels/swaptioncfs.hpp>
#include <ql/experimental/basismodels/tenoroptionletvts.hpp>
#include <ql/experimental/basismodels/tenorswaptionvts.hpp>
#include <ql/indexes/ibor/euribor.hpp>
#include <ql/instruments/vanillaswap.hpp>
#include <ql/instruments/swaption.hpp>
#include <ql/pricingengines/swap/discountingswapengine.hpp>
#include <ql/termstructures/volatility/optionlet/strippedoptionlet.hpp>
#include <ql/termstructures/volatility/optionlet/strippedoptionletadapter.hpp>
#include <ql/termstructures/volatility/swaption/swaptionvolmatrix.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/math/interpolations/cubicinterpolation.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/time/daycounters/thirty360.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(BasisModelsTests)
// auxiliary data
Period termsData[] = {
Period(0, Days), Period(1, Years), Period(2, Years), Period(3, Years),
Period(5, Years), Period(7, Years), Period(10, Years), Period(15, Years),
Period(20, Years), Period(61, Years) // avoid extrapolation issues with 30y caplets
};
std::vector<Period> terms(termsData, termsData + 10);
Real discRatesData[] = {-0.00147407, -0.001761684, -0.001736745, -0.00119244, 0.000896055,
0.003537077, 0.007213824, 0.011391278, 0.013334611, 0.013982809};
std::vector<Real> discRates(discRatesData, discRatesData + 10);
Real proj3mRatesData[] = {-0.000483439, -0.000578569, -0.000383832, 0.000272656, 0.002478699,
0.005100113, 0.008750643, 0.012788095, 0.014534052, 0.014942896};
std::vector<Real> proj3mRates(proj3mRatesData, proj3mRatesData + 10);
Real proj6mRatesData[] = {0.000233608, 0.000218862, 0.000504018, 0.001240556, 0.003554415,
0.006153921, 0.009688264, 0.013521628, 0.015136391, 0.015377704};
std::vector<Real> proj6mRates(proj6mRatesData, proj6mRatesData + 10);
Handle<YieldTermStructure> getYTS(const std::vector<Period>& terms,
const std::vector<Real>& rates,
const Real spread = 0.0) {
Date today = Settings::instance().evaluationDate();
std::vector<Date> dates;
dates.reserve(terms.size());
for (auto term : terms)
dates.push_back(NullCalendar().advance(today, term, Unadjusted));
std::vector<Real> ratesPlusSpread(rates);
for (Real& k : ratesPlusSpread)
k += spread;
ext::shared_ptr<YieldTermStructure> ts =
ext::shared_ptr<YieldTermStructure>(new InterpolatedZeroCurve<Cubic>(
dates, ratesPlusSpread, Actual365Fixed(), NullCalendar()));
return RelinkableHandle<YieldTermStructure>(ts);
}
Period capletTermsData[] = {Period(1, Years), Period(2, Years), Period(3, Years),
Period(5, Years), Period(7, Years), Period(10, Years),
Period(15, Years), Period(20, Years), Period(25, Years),
Period(30, Years)};
std::vector<Period> capletTerms(capletTermsData, capletTermsData + 10);
Real capletStrikesData[] = {-0.0050, 0.0000, 0.0050, 0.0100, 0.0150, 0.0200, 0.0300, 0.0500};
std::vector<Real> capletStrikes(capletStrikesData, capletStrikesData + 8);
Handle<OptionletVolatilityStructure> getOptionletTS() {
Date today = Settings::instance().evaluationDate();
std::vector<Date> dates;
dates.reserve(capletTerms.size());
for (auto& capletTerm : capletTerms)
dates.push_back(TARGET().advance(today, capletTerm, Following));
// set up vol data manually
std::vector<std::vector<Real> > capletVols =
{
{0.003010094, 0.002628065, 0.00456118, 0.006731268, 0.008678572, 0.010570881, 0.014149552, 0.021000638},
{0.004173715, 0.003727039, 0.004180263, 0.005726083, 0.006905876, 0.008263514, 0.010555395, 0.014976523},
{0.005870143, 0.005334526, 0.005599775, 0.006633987, 0.007773317, 0.009036581, 0.011474391, 0.016277549},
{0.007458597, 0.007207522, 0.007263995, 0.007308727, 0.007813586, 0.008274858, 0.009743988, 0.012555171},
{0.007711531, 0.007608826, 0.007572816, 0.007684107, 0.007971932, 0.008283118, 0.009268828, 0.011574083},
{0.007619605, 0.007639059, 0.007719825, 0.007823373, 0.00800813, 0.008113384, 0.008616374, 0.009785436},
{0.007312199, 0.007352993, 0.007369116, 0.007468333, 0.007515657, 0.00767695, 0.008020447, 0.009072769},
{0.006905851, 0.006966315, 0.007056413, 0.007116494, 0.007259661, 0.00733308, 0.007667563, 0.008419696},
{0.006529553, 0.006630731, 0.006749022, 0.006858027, 0.007001959, 0.007139097, 0.007390404, 0.008036255},
{0.006225482, 0.006404012, 0.00651594, 0.006642273, 0.006640887, 0.006885713, 0.007093024, 0.00767373}
};
// create quotes
std::vector<std::vector<Handle<Quote> > > capletVolQuotes;
for (auto& capletVol : capletVols) {
std::vector<Handle<Quote> > row;
row.reserve(capletVol.size());
for (Real j : capletVol)
row.push_back(RelinkableHandle<Quote>(ext::shared_ptr<Quote>(new SimpleQuote(j))));
capletVolQuotes.push_back(row);
}
Handle<YieldTermStructure> curve3m = getYTS(terms, proj3mRates);
ext::shared_ptr<IborIndex> index(new Euribor3M(curve3m));
ext::shared_ptr<StrippedOptionletBase> tmp1(
new StrippedOptionlet(2, TARGET(), Following, index, dates, capletStrikes,
capletVolQuotes, Actual365Fixed(), Normal, 0.0));
ext::shared_ptr<StrippedOptionletAdapter> tmp2(new StrippedOptionletAdapter(tmp1));
return RelinkableHandle<OptionletVolatilityStructure>(tmp2);
}
Period swaptionVTSTermsData[] = {
Period(1, Years), Period(5, Years), Period(10, Years), Period(20, Years), Period(30, Years),
};
std::vector<Period> swaptionVTSTerms(swaptionVTSTermsData, swaptionVTSTermsData + 5);
Handle<SwaptionVolatilityStructure> getSwaptionVTS() {
std::vector<std::vector<Real> > swaptionVols =
{
{0.002616, 0.00468, 0.0056, 0.005852, 0.005823},
{0.006213, 0.00643, 0.006622, 0.006124, 0.005958},
{0.006658, 0.006723, 0.006602, 0.005802, 0.005464},
{0.005728, 0.005814, 0.005663, 0.004689, 0.004276},
{0.005041, 0.005059, 0.004746, 0.003927, 0.003608}
};
std::vector<std::vector<Handle<Quote> > > swaptionVolQuotes;
for (auto& swaptionVol : swaptionVols) {
std::vector<Handle<Quote> > row;
row.reserve(swaptionVol.size());
for (Real j : swaptionVol)
row.push_back(RelinkableHandle<Quote>(ext::shared_ptr<Quote>(new SimpleQuote(j))));
swaptionVolQuotes.push_back(row);
}
ext::shared_ptr<SwaptionVolatilityStructure> tmp(
new SwaptionVolatilityMatrix(TARGET(), Following, swaptionVTSTerms, swaptionVTSTerms,
swaptionVolQuotes, Actual365Fixed(), true, Normal));
return RelinkableHandle<SwaptionVolatilityStructure>(tmp);
}
void testSwaptioncfs(bool contTenorSpread) {
bool usingAtParCoupons = IborCoupon::Settings::instance().usingAtParCoupons();
// market data and floating rate index
Handle<YieldTermStructure> discYTS = getYTS(terms, discRates);
Handle<YieldTermStructure> proj6mYTS = getYTS(terms, proj6mRates);
ext::shared_ptr<IborIndex> euribor6m(new Euribor6M(proj6mYTS));
// Vanilla swap details
Date today = Settings::instance().evaluationDate();
Date swapStart = TARGET().advance(today, Period(5, Years), Following);
Date swapEnd = TARGET().advance(swapStart, Period(10, Years), Following);
Date exerciseDate = TARGET().advance(swapStart, Period(-2, Days), Preceding);
Schedule fixedSchedule(swapStart, swapEnd, Period(1, Years), TARGET(), ModifiedFollowing,
ModifiedFollowing, DateGeneration::Backward, false);
Schedule floatSchedule(swapStart, swapEnd, Period(6, Months), TARGET(), ModifiedFollowing,
ModifiedFollowing, DateGeneration::Backward, false);
ext::shared_ptr<VanillaSwap> swap(
new VanillaSwap(Swap::Payer, 10000.0, fixedSchedule, 0.03, Thirty360(Thirty360::BondBasis),
floatSchedule, euribor6m, 0.0, euribor6m->dayCounter()));
swap->setPricingEngine(ext::shared_ptr<PricingEngine>(new DiscountingSwapEngine(discYTS)));
// European exercise and swaption
ext::shared_ptr<Exercise> europeanExercise(new EuropeanExercise(exerciseDate));
ext::shared_ptr<Swaption> swaption(
new Swaption(swap, europeanExercise, Settlement::Physical));
// calculate basis model swaption cash flows, discount and conmpare with swap
SwaptionCashFlows cashFlows(swaption, discYTS, contTenorSpread);
// model time is always Act365Fixed
Time exerciseTime = Actual365Fixed().yearFraction(discYTS->referenceDate(),
swaption->exercise()->dates()[0]);
if (exerciseTime != cashFlows.exerciseTimes()[0])
BOOST_ERROR("Swaption cash flow exercise time does not coincide with manual calculation");
// there might be rounding errors
Real tol = 1.0e-8;
// (discounted) fixed leg coupons must match swap fixed leg NPV
Real fixedLeg = 0.0;
for (Size k = 0; k < cashFlows.fixedTimes().size(); ++k)
fixedLeg += cashFlows.fixedWeights()[k] * discYTS->discount(cashFlows.fixedTimes()[k]);
if (fabs(fixedLeg - (-swap->fixedLegNPV())) > tol) // note, '-1' because payer swap
BOOST_ERROR("Swaption cash flow fixed leg NPV does not match Vanillaswap fixed leg NPV"
<< "SwaptionCashFlows: " << fixedLeg << "\n"
<< "swap->fixedLegNPV: " << swap->fixedLegNPV() << "\n"
<< "Variance: " << swap->fixedLegNPV() - fixedLeg << "\n");
// (discounted) floating leg coupons must match swap floating leg NPV
Real floatLeg = 0.0;
for (Size k = 0; k < cashFlows.floatTimes().size(); ++k)
floatLeg += cashFlows.floatWeights()[k] * discYTS->discount(cashFlows.floatTimes()[k]);
if (fabs(floatLeg - swap->floatingLegNPV()) > tol)
BOOST_ERROR(
"Swaption cash flow floating leg NPV does not match Vanillaswap floating leg NPV.\n"
<< "SwaptionCashFlows: " << floatLeg << "\n"
<< "swap->floatingLegNPV: " << swap->floatingLegNPV() << "\n"
<< "Variance: " << swap->floatingLegNPV() - floatLeg << "\n");
// There should not be spread coupons in a single-curve setting.
// However, if indexed coupons are used the floating leg is not at par,
// so we need to relax the tolerance to a level at which it will only
// catch large errors.
Real tol2 = usingAtParCoupons ? tol : 0.02;
SwaptionCashFlows singleCurveCashFlows(swaption, proj6mYTS, contTenorSpread);
for (Size k = 1; k < singleCurveCashFlows.floatWeights().size() - 1; ++k) {
if (fabs(singleCurveCashFlows.floatWeights()[k]) > tol2)
BOOST_ERROR("Swaption cash flow floating leg spread does not vanish in "
"single-curve setting.\n"
<< "Cash flow index k: " << k << ", floatWeights: "
<< singleCurveCashFlows.floatWeights()[k] << "\n");
}
}
BOOST_AUTO_TEST_CASE(testSwaptioncfsContCompSpread) {
BOOST_TEST_MESSAGE(
"Testing deterministic tenor basis model with continuous compounded spreads...");
testSwaptioncfs(true);
}
BOOST_AUTO_TEST_CASE(testSwaptioncfsSimpleCompSpread) {
BOOST_TEST_MESSAGE("Testing deterministic tenor basis model with simple compounded spreads...");
testSwaptioncfs(false);
}
BOOST_AUTO_TEST_CASE(testTenoroptionletvts) {
BOOST_TEST_MESSAGE("Testing volatility transformation for caplets/floorlets...");
// market data and floating rate index
Real spread = 0.01;
Handle<YieldTermStructure> discYTS = getYTS(terms, discRates);
Handle<YieldTermStructure> proj3mYTS = getYTS(terms, proj3mRates);
Handle<YieldTermStructure> proj6mYTS = getYTS(terms, proj3mRates, spread);
ext::shared_ptr<IborIndex> euribor3m(new Euribor6M(proj3mYTS));
ext::shared_ptr<IborIndex> euribor6m(new Euribor6M(proj6mYTS));
// 3m optionlet VTS
Handle<OptionletVolatilityStructure> optionletVTS3m = getOptionletTS();
{
// we need a correlation structure
Real corrTimesRaw[] = {0.0, 50.0};
Real rhoInfDataRaw[] = {0.3, 0.3};
Real betaDataRaw[] = {0.9, 0.9};
std::vector<Real> corrTimes(corrTimesRaw, corrTimesRaw + 2);
std::vector<Real> rhoInfData(rhoInfDataRaw, rhoInfDataRaw + 2);
std::vector<Real> betaData(betaDataRaw, betaDataRaw + 2);
ext::shared_ptr<Interpolation> rho(
new LinearInterpolation(corrTimes.begin(), corrTimes.end(), rhoInfData.begin()));
ext::shared_ptr<Interpolation> beta(
new LinearInterpolation(corrTimes.begin(), corrTimes.end(), betaData.begin()));
ext::shared_ptr<TenorOptionletVTS::CorrelationStructure> corr(
new TenorOptionletVTS::TwoParameterCorrelation(rho, beta));
// now we can set up the new volTS and calculate volatilities
ext::shared_ptr<OptionletVolatilityStructure> optionletVTS6m(
new TenorOptionletVTS(optionletVTS3m, euribor3m, euribor6m, corr));
for (auto& capletTerm : capletTerms) {
for (Real& capletStrike : capletStrikes) {
Real vol3m = optionletVTS3m->volatility(capletTerm, capletStrike, true);
Real vol6m = optionletVTS6m->volatility(capletTerm, capletStrike, true);
Real vol6mShifted =
optionletVTS6m->volatility(capletTerm, capletStrike + spread, true);
// De-correlation yields that larger tenor shifted vols are smaller then shorter
// tenor vols
if (vol6mShifted - vol3m >
0.0001) // we leave 1bp tolerance due to simplified spread calculation
BOOST_ERROR("Shifted 6m vol significantly larger then 3m vol at\n"
<< "expiry term: " << capletTerm << ", strike: " << capletStrike
<< "\n"
<< "vol3m: " << vol3m << ", vol6m: " << vol6m
<< ", vol6mShifted: " << vol6mShifted << "\n");
}
}
}
{
// we need a correlation structure
Real corrTimesRaw[] = {0.0, 50.0};
Real rhoInfDataRaw[] = {0.0, 0.0};
Real betaDataRaw[] = {0.0, 0.0};
std::vector<Real> corrTimes(corrTimesRaw, corrTimesRaw + 2);
std::vector<Real> rhoInfData(rhoInfDataRaw, rhoInfDataRaw + 2);
std::vector<Real> betaData(betaDataRaw, betaDataRaw + 2);
ext::shared_ptr<Interpolation> rho(
new LinearInterpolation(corrTimes.begin(), corrTimes.end(), rhoInfData.begin()));
ext::shared_ptr<Interpolation> beta(
new LinearInterpolation(corrTimes.begin(), corrTimes.end(), betaData.begin()));
ext::shared_ptr<TenorOptionletVTS::CorrelationStructure> corr(
new TenorOptionletVTS::TwoParameterCorrelation(rho, beta));
// now we can set up the new volTS and calculate volatilities
ext::shared_ptr<OptionletVolatilityStructure> optionletVTS6m(
new TenorOptionletVTS(optionletVTS3m, euribor3m, euribor6m, corr));
for (Size i = 0; i < capletTerms.size(); ++i) {
for (Real& capletStrike : capletStrikes) {
Real vol3m = optionletVTS3m->volatility(capletTerms[i], capletStrike, true);
Real vol6m = optionletVTS6m->volatility(capletTerms[i], capletStrike, true);
Real vol6mShifted =
optionletVTS6m->volatility(capletTerms[i], capletStrike + spread, true);
// for perfect correlation shifted 6m vols should coincide with 3m vols
Real tol =
(i < 3) ? (0.001) :
(0.0001); // 10bp tol for smaller tenors and 1bp tol for larger tenors
if (fabs(vol6mShifted - vol3m) > tol)
BOOST_ERROR("Shifted 6m vol does not match 3m vol for perfect correlation at\n"
<< "expiry term: " << capletTerms[i] << ", strike: " << capletStrike
<< "\n"
<< "vol3m: " << vol3m << ", vol6m: " << vol6m
<< ", vol6mShifted: " << vol6mShifted << "\n");
}
}
}
}
BOOST_AUTO_TEST_CASE(testTenorswaptionvts) {
BOOST_TEST_MESSAGE("Testing volatility transformation for swaptions...");
// market data and floating rate index
Real spread = 0.01;
Handle<YieldTermStructure> discYTS = getYTS(terms, discRates);
Handle<YieldTermStructure> proj3mYTS = getYTS(terms, proj3mRates);
Handle<YieldTermStructure> proj6mYTS = getYTS(terms, proj3mRates, spread);
ext::shared_ptr<IborIndex> euribor3m(new Euribor6M(proj3mYTS));
ext::shared_ptr<IborIndex> euribor6m(new Euribor6M(proj6mYTS));
// Euribor6m ATM vols
Handle<SwaptionVolatilityStructure> euribor6mSwVTS = getSwaptionVTS();
{
ext::shared_ptr<TenorSwaptionVTS> euribor3mSwVTS(
new TenorSwaptionVTS(euribor6mSwVTS, discYTS, euribor6m, euribor3m, Period(1, Years),
Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
// 6m vols should be slightly larger then 3m vols due to basis
for (Size i = 0; i < swaptionVTSTerms.size(); ++i) {
for (Size j = 0; j < swaptionVTSTerms.size(); ++j) {
Real vol6m = euribor6mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
0.01, true);
Real vol3m = euribor3mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
0.01, true);
if (vol3m > vol6m)
BOOST_ERROR("Euribor 6m must be larger than 3m vol at\n"
<< "expiry term: " << swaptionVTSTerms[i]
<< ", swap term: " << swaptionVTSTerms[j] << "\n"
<< "vol3m: " << vol3m << ", vol6m: " << vol6m << "\n");
}
}
}
{
ext::shared_ptr<TenorSwaptionVTS> euribor6mSwVTS2(
new TenorSwaptionVTS(euribor6mSwVTS, discYTS, euribor6m, euribor6m, Period(1, Years),
Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
// 6m vols to 6m vols should yield initiial vols
for (Size i = 0; i < swaptionVTSTerms.size(); ++i) {
for (Size j = 0; j < swaptionVTSTerms.size(); ++j) {
Real vol6m = euribor6mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
0.01, true);
Real vol6m2 = euribor6mSwVTS2->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
0.01, true);
Real tol = 1.0e-8;
if (fabs(vol6m2 - vol6m) > tol)
BOOST_ERROR("Euribor 6m to 6m vols should not change at\n"
<< "expiry term: " << swaptionVTSTerms[i]
<< ", swap term: " << swaptionVTSTerms[j] << "\n"
<< "vol6m: " << vol6m << ", vol6m2: " << vol6m2
<< ", variance: " << (vol6m2 - vol6m) << "\n");
}
}
}
{
ext::shared_ptr<TenorSwaptionVTS> euribor3mSwVTS(
new TenorSwaptionVTS(euribor6mSwVTS, discYTS, euribor6m, euribor3m, Period(1, Years),
Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
ext::shared_ptr<TenorSwaptionVTS> euribor6mSwVTS2(new TenorSwaptionVTS(
RelinkableHandle<SwaptionVolatilityStructure>(euribor3mSwVTS), discYTS, euribor3m,
euribor6m, Period(1, Years), Period(1, Years), Thirty360(Thirty360::BondBasis), Thirty360(Thirty360::BondBasis)));
// 6m vols to 6m vols should yield initiial vols
for (Size i = 0; i < swaptionVTSTerms.size(); ++i) {
for (Size j = 0; j < swaptionVTSTerms.size(); ++j) {
Real vol6m = euribor6mSwVTS->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
0.01, true);
Real vol6m2 = euribor6mSwVTS2->volatility(swaptionVTSTerms[i], swaptionVTSTerms[j],
0.01, true);
Real tol = 1.0e-8;
if (fabs(vol6m2 - vol6m) > tol)
BOOST_ERROR("Euribor 6m to 3m to 6m vols should not change at\n"
<< "expiry term: " << swaptionVTSTerms[i]
<< ", swap term: " << swaptionVTSTerms[j] << "\n"
<< "vol6m: " << vol6m << ", vol6m2: " << vol6m2
<< ", variance: " << (vol6m2 - vol6m) << "\n");
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|