1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/currencies/europe.hpp>
#include <ql/experimental/credit/cdo.hpp>
#include <ql/experimental/credit/gaussianlhplossmodel.hpp>
#include <ql/experimental/credit/homogeneouspooldef.hpp>
#include <ql/experimental/credit/inhomogeneouspooldef.hpp>
#include <ql/experimental/credit/integralcdoengine.hpp>
#include <ql/experimental/credit/midpointcdoengine.hpp>
#include <ql/experimental/credit/pool.hpp>
#include <ql/experimental/credit/randomdefaultlatentmodel.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/credit/flathazardrate.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/time/daycounters/actual360.hpp>
#include <ql/time/daycounters/actualactual.hpp>
#include <boost/mpl/vector.hpp>
#include <iomanip>
#include <iostream>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(CdoTests, *precondition(if_speed(Slow)))
#ifndef QL_PATCH_SOLARIS
Real hwAttachment[] = { 0.00, 0.03, 0.06, 0.10 };
Real hwDetachment[] = { 0.03, 0.06, 0.10, 1.00 };
struct hwDatum {
Real correlation;
Integer nm;
Integer nz;
Real trancheSpread[4];
};
// HW Table 7
// corr, Nm, Nz, 0-3, 3-6, 6-10, 10-100
hwDatum hwData7[] = {
{ 0.1, -1, -1, { 2279, 450, 89, 1 } },
{ 0.3, -1, -1, { 1487, 472, 203, 7 } },
// Opening the T, T&G tests too. The convolution is analytical
// now so it runs it a time comparable to the gaussian tests and
// has enough precission to pass the tests.
// Below the T models are integrated with a quadrature, even if this
// is incorrect the test pass good enough, the quadrature gets to
// be worst as the kernel deviates from a normal, this is low
// orders of the T; here 5 is enough, 3 would not be.
{ 0.3, -1, 5, { 1766, 420, 161, 6 } },
{ 0.3, 5, -1, { 1444, 408, 171, 10 } },
{ 0.3, 5, 5, { 1713, 359, 136, 9 } }
};
void check(int i, int j, const std::string& desc, Real found, Real expected,
Real bpTolerance, Real relativeTolerance)
{
/* Uncomment to display the full show if your debugging:
std::cout<< "Case: "<< i << " " << j << " " << found << " :: "
<< expected << " ("<< desc << ") " << std::endl;
*/
Real absDiff = found - expected;
Real relDiff = absDiff / expected;
BOOST_CHECK_MESSAGE (fabs(relDiff) < relativeTolerance ||
fabs(absDiff) < bpTolerance,
"case " << i << " " << j << " ("<< desc << "): "
<< found << " vs. " << expected);
}
struct dataSetOne { static const int dataset{0}; };
struct dataSetTwo { static const int dataset{1}; };
struct dataSetThree { static const int dataset{2}; };
struct dataSetFour { static const int dataset{3}; };
struct dataSetFive { static const int dataset{4}; };
using dataSets = boost::mpl::vector<dataSetOne, dataSetTwo, dataSetThree, dataSetFour, dataSetFive>;
BOOST_AUTO_TEST_CASE_TEMPLATE(testHW, T, dataSets) {
const int dataSet = T::dataset;
BOOST_TEST_MESSAGE("Testing CDO premiums against Hull-White values"
" for data set "
<< dataSet << "...");
Size poolSize = 100;
Real lambda = 0.01;
// nBuckets and period determine the computation time
Size nBuckets = 200;
// Period period = 1*Months;
// for MC engines
Size numSims = 5000;
Real rate = 0.05;
DayCounter daycount = Actual360();
Compounding cmp = Continuous; // Simple;
Real recovery = 0.4;
std::vector<Real> nominals(poolSize, 100.0);
Real premium = 0.02;
Period maxTerm(5, Years);
Schedule schedule = MakeSchedule()
.from(Date(1, September, 2006))
.to(Date(1, September, 2011))
.withTenor(Period(3, Months))
.withCalendar(TARGET());
Date asofDate = Date(31, August, 2006);
Settings::instance().evaluationDate() = asofDate;
ext::shared_ptr<YieldTermStructure> yieldPtr(
new FlatForward(asofDate, rate, daycount, cmp));
Handle<YieldTermStructure> yieldHandle(yieldPtr);
Handle<Quote> hazardRate(ext::shared_ptr<Quote>(new SimpleQuote(lambda)));
std::vector<Handle<DefaultProbabilityTermStructure>> basket;
ext::shared_ptr<DefaultProbabilityTermStructure> ptr(
new FlatHazardRate(asofDate, hazardRate, ActualActual(ActualActual::ISDA)));
ext::shared_ptr<Pool> pool(new Pool());
std::vector<std::string> names;
// probability key items
std::vector<Issuer> issuers;
std::vector<std::pair<DefaultProbKey, Handle<DefaultProbabilityTermStructure>>>
probabilities;
probabilities.emplace_back(
NorthAmericaCorpDefaultKey(EURCurrency(), SeniorSec, Period(0, Weeks), 10.),
Handle<DefaultProbabilityTermStructure>(ptr));
for (Size i = 0; i < poolSize; ++i) {
std::ostringstream o;
o << "issuer-" << i;
names.push_back(o.str());
basket.emplace_back(ptr);
issuers.emplace_back(probabilities);
pool->add(names.back(), issuers.back(),
NorthAmericaCorpDefaultKey(EURCurrency(), QuantLib::SeniorSec, Period(), 1.));
}
ext::shared_ptr<SimpleQuote> correlation(new SimpleQuote(0.0));
Handle<Quote> hCorrelation(correlation);
QL_REQUIRE(std::size(hwAttachment) == std::size(hwDetachment), "data length does not match");
ext::shared_ptr<PricingEngine> midPCDOEngine(new MidPointCDOEngine(yieldHandle));
ext::shared_ptr<PricingEngine> integralCDOEngine(new IntegralCDOEngine(yieldHandle));
const Size i = dataSet;
correlation->setValue(hwData7[i].correlation);
QL_REQUIRE(std::size(hwAttachment) == std::size(hwData7[i].trancheSpread),
"data length does not match");
std::vector<ext::shared_ptr<DefaultLossModel>> basketModels;
std::vector<std::string> modelNames;
std::vector<Real> relativeToleranceMidp, relativeTolerancePeriod, absoluteTolerance;
if (hwData7[i].nm == -1 && hwData7[i].nz == -1) {
ext::shared_ptr<GaussianConstantLossLM> gaussKtLossLM(
new GaussianConstantLossLM(hCorrelation, std::vector<Real>(poolSize, recovery),
LatentModelIntegrationType::GaussianQuadrature, poolSize,
GaussianCopulaPolicy::initTraits()));
// 1.-Inhomogeneous gaussian
modelNames.emplace_back("Inhomogeneous gaussian");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new IHGaussPoolLossModel(gaussKtLossLM, nBuckets, 5., -5, 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 2.-homogeneous gaussian
modelNames.emplace_back("Homogeneous gaussian");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new HomogGaussPoolLossModel(gaussKtLossLM, nBuckets, 5., -5, 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 3.-random default gaussian
modelNames.emplace_back("Random default gaussian");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new RandomDefaultLM<GaussianCopulaPolicy>(gaussKtLossLM, numSims)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.07);
relativeTolerancePeriod.push_back(0.07);
// SECOND MC
// gaussian LHP
modelNames.emplace_back("Gaussian LHP");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new GaussianLHPLossModel(hCorrelation, std::vector<Real>(poolSize, recovery))));
absoluteTolerance.push_back(10.);
relativeToleranceMidp.push_back(0.5);
relativeTolerancePeriod.push_back(0.5);
// Binomial...
// Saddle point...
// Recursive ...
} else if (hwData7[i].nm > 0 && hwData7[i].nz > 0) {
TCopulaPolicy::initTraits initTG;
initTG.tOrders.push_back(hwData7[i].nm);
initTG.tOrders.push_back(hwData7[i].nz);
ext::shared_ptr<TConstantLossLM> TKtLossLM(new TConstantLossLM(
hCorrelation, std::vector<Real>(poolSize, recovery),
LatentModelIntegrationType::GaussianQuadrature, poolSize, initTG));
// 1.-inhomogeneous studentT
modelNames.emplace_back("Inhomogeneous student");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new IHStudentPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 2.-homogeneous student T
modelNames.emplace_back("Homogeneous student");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new HomogTPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 3.-random default student T
modelNames.emplace_back("Random default studentT");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new RandomDefaultLM<TCopulaPolicy>(TKtLossLM, numSims)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.07);
relativeTolerancePeriod.push_back(0.07);
// SECOND MC
// Binomial...
// Saddle point...
// Recursive ...
} else if (hwData7[i].nm > 0 && hwData7[i].nz == -1) {
TCopulaPolicy::initTraits initTG;
initTG.tOrders.push_back(hwData7[i].nm);
initTG.tOrders.push_back(45);
/* T_{55} is pretty close to a gaussian. Probably theres no need to
be this conservative as the polynomial convolution gets shorter and
faster as the order decreases.
*/
ext::shared_ptr<TConstantLossLM> TKtLossLM(new TConstantLossLM(
hCorrelation, std::vector<Real>(poolSize, recovery),
LatentModelIntegrationType::GaussianQuadrature, poolSize, initTG));
// 1.-inhomogeneous
modelNames.emplace_back("Inhomogeneous student-gaussian");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new IHStudentPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 2.-homogeneous
modelNames.emplace_back("Homogeneous student-gaussian");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new HomogTPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 3.-random default
modelNames.emplace_back("Random default student-gaussian");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new RandomDefaultLM<TCopulaPolicy>(TKtLossLM, numSims)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.07);
relativeTolerancePeriod.push_back(0.07);
// SECOND MC
// Binomial...
// Saddle point...
// Recursive ...
} else if (hwData7[i].nm == -1 && hwData7[i].nz > 0) {
TCopulaPolicy::initTraits initTG;
initTG.tOrders.push_back(45); // pretty close to gaussian
initTG.tOrders.push_back(hwData7[i].nz);
ext::shared_ptr<TConstantLossLM> TKtLossLM(new TConstantLossLM(
hCorrelation, std::vector<Real>(poolSize, recovery),
LatentModelIntegrationType::GaussianQuadrature, poolSize, initTG));
// 1.-inhomogeneous gaussian
modelNames.emplace_back("Inhomogeneous gaussian-student");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new IHStudentPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 2.-homogeneous gaussian
modelNames.emplace_back("Homogeneous gaussian-student");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new HomogTPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.04);
relativeTolerancePeriod.push_back(0.04);
// 3.-random default gaussian
modelNames.emplace_back("Random default gaussian-student");
basketModels.push_back(ext::shared_ptr<DefaultLossModel>(
new RandomDefaultLM<TCopulaPolicy>(TKtLossLM, numSims)));
absoluteTolerance.push_back(1.);
relativeToleranceMidp.push_back(0.07);
relativeTolerancePeriod.push_back(0.07);
// SECOND MC
// Binomial...
// Saddle point...
// Recursive ...
} else {
return;
}
for (Size j = 0; j < std::size(hwAttachment); j++) {
ext::shared_ptr<Basket> basketPtr(
new Basket(asofDate, names, nominals, pool, hwAttachment[j], hwDetachment[j]));
std::ostringstream trancheId;
trancheId << "[" << hwAttachment[j] << " , " << hwDetachment[j] << "]";
SyntheticCDO cdoe(basketPtr, Protection::Seller, schedule, 0.0, premium, daycount,
Following);
for (Size im = 0; im < basketModels.size(); im++) {
basketPtr->setLossModel(basketModels[im]);
cdoe.setPricingEngine(midPCDOEngine);
check(i, j,
modelNames[im] + std::string(" with midp integration on ") + trancheId.str(),
cdoe.fairPremium() * 1e4, hwData7[i].trancheSpread[j], absoluteTolerance[im],
relativeToleranceMidp[im]);
cdoe.setPricingEngine(integralCDOEngine);
check(i, j,
modelNames[im] + std::string(" with step integration on ") + trancheId.str(),
cdoe.fairPremium() * 1e4, hwData7[i].trancheSpread[j], absoluteTolerance[im],
relativeTolerancePeriod[im]);
}
}
}
#endif
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|