1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003, 2004 Ferdinando Ametrano
Copyright (C) 2003 StatPro Italia srl
Copyright (C) 2005 Gary Kennedy
Copyright (C) 2013 Fabien Le Floc'h
Copyright (C) 2016 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/bivariatenormaldistribution.hpp>
#include <ql/math/distributions/bivariatestudenttdistribution.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/math/distributions/poissondistribution.hpp>
#include <ql/math/randomnumbers/stochasticcollocationinvcdf.hpp>
#include <ql/math/comparison.hpp>
#include <boost/math/distributions/non_central_chi_squared.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(DistributionTests)
Real average = 1.0, sigma = 2.0;
Real gaussian(Real x) {
Real normFact = sigma*std::sqrt(2*M_PI);
Real dx = x-average;
return std::exp(-dx*dx/(2.0*sigma*sigma))/normFact;
}
Real gaussianDerivative(Real x) {
Real normFact = sigma*sigma*sigma*std::sqrt(2*M_PI);
Real dx = x-average;
return -dx*std::exp(-dx*dx/(2.0*sigma*sigma))/normFact;
}
struct BivariateTestData {
Real a;
Real b;
Real rho;
Real result;
};
template <class Bivariate>
void checkBivariate(const char* tag) {
BivariateTestData values[] = {
/* The data below are from
"Option pricing formulas", E.G. Haug, McGraw-Hill 1998
pag 193
*/
{ 0.0, 0.0, 0.0, 0.250000 },
{ 0.0, 0.0, -0.5, 0.166667 },
{ 0.0, 0.0, 0.5, 1.0/3 },
{ 0.0, -0.5, 0.0, 0.154269 },
{ 0.0, -0.5, -0.5, 0.081660 },
{ 0.0, -0.5, 0.5, 0.226878 },
{ 0.0, 0.5, 0.0, 0.345731 },
{ 0.0, 0.5, -0.5, 0.273122 },
{ 0.0, 0.5, 0.5, 0.418340 },
{ -0.5, 0.0, 0.0, 0.154269 },
{ -0.5, 0.0, -0.5, 0.081660 },
{ -0.5, 0.0, 0.5, 0.226878 },
{ -0.5, -0.5, 0.0, 0.095195 },
{ -0.5, -0.5, -0.5, 0.036298 },
{ -0.5, -0.5, 0.5, 0.163319 },
{ -0.5, 0.5, 0.0, 0.213342 },
{ -0.5, 0.5, -0.5, 0.145218 },
{ -0.5, 0.5, 0.5, 0.272239 },
{ 0.5, 0.0, 0.0, 0.345731 },
{ 0.5, 0.0, -0.5, 0.273122 },
{ 0.5, 0.0, 0.5, 0.418340 },
{ 0.5, -0.5, 0.0, 0.213342 },
{ 0.5, -0.5, -0.5, 0.145218 },
{ 0.5, -0.5, 0.5, 0.272239 },
{ 0.5, 0.5, 0.0, 0.478120 },
{ 0.5, 0.5, -0.5, 0.419223 },
{ 0.5, 0.5, 0.5, 0.546244 },
// known analytical values
{ 0.0, 0.0, std::sqrt(1/2.0), 3.0/8},
// { 0.0, big, any, 0.500000 },
{ 0.0, 30, -1.0, 0.500000 },
{ 0.0, 30, 0.0, 0.500000 },
{ 0.0, 30, 1.0, 0.500000 },
// { big, big, any, 1.000000 },
{ 30, 30, -1.0, 1.000000 },
{ 30, 30, 0.0, 1.000000 },
{ 30, 30, 1.0, 1.000000 },
// {-big, any, any, 0.000000 }
{ -30, -1.0, -1.0, 0.000000 },
{ -30, 0.0, -1.0, 0.000000 },
{ -30, 1.0, -1.0, 0.000000 },
{ -30, -1.0, 0.0, 0.000000 },
{ -30, 0.0, 0.0, 0.000000 },
{ -30, 1.0, 0.0, 0.000000 },
{ -30, -1.0, 1.0, 0.000000 },
{ -30, 0.0, 1.0, 0.000000 },
{ -30, 1.0, 1.0, 0.000000 }
};
for (Size i=0; i<std::size(values); i++) {
Bivariate bcd(values[i].rho);
Real value = bcd(values[i].a, values[i].b);
Real tolerance = 1.0e-6;
if (std::fabs(value-values[i].result) >= tolerance) {
BOOST_ERROR(tag << " bivariate cumulative distribution\n"
<< " case: " << i+1 << "\n"
<< std::fixed
<< " a: " << values[i].a << "\n"
<< " b: " << values[i].b << "\n"
<< " rho: " << values[i].rho <<"\n"
<< std::scientific
<< " tabulated value: "
<< values[i].result << "\n"
<< " result: " << value);
}
}
}
template <class Bivariate>
void checkBivariateAtZero(const char* tag, Real tolerance) {
/*
BVN(0.0,0.0,rho) = 1/4 + arcsin(rho)/(2*M_PI)
"Handbook of the Normal Distribution",
J.K. Patel & C.B.Read, 2nd Ed, 1996
*/
const Real rho[] = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.99999 };
const Real x(0.0);
const Real y(0.0);
for (Real i : rho) {
for (Integer sgn=-1; sgn < 2; sgn+=2) {
Bivariate bvn(sgn * i);
Real expected = 0.25 + std::asin(sgn * i) / (2 * M_PI);
Real realised = bvn(x,y);
if (std::fabs(realised-expected)>=tolerance) {
BOOST_ERROR(tag << " bivariate cumulative distribution\n"
<< std::scientific << " rho: " << sgn * i << "\n"
<< " expected: " << expected << "\n"
<< " realised: " << realised << "\n"
<< " tolerance: " << tolerance);
}
}
}
}
template <class Bivariate>
void checkBivariateTail(const char* tag, Real tolerance) {
/* make sure numerical greeks are sensible, numerical error in
* the tails can make garbage greeks for partial time barrier
* option */
Real x = -6.9;
Real y = 6.9;
Real corr = -0.999;
Bivariate bvn(corr);
for (int i = 0; i<10;i++) {
Real cdf0 = bvn(x,y);
y = y + tolerance;
Real cdf1 = bvn(x,y);
if (cdf0 > cdf1) {
BOOST_ERROR(tag << " cdf must be decreasing in the tails\n"
<< std::scientific
<< " cdf0: " << cdf0 << "\n"
<< " cdf1: " << cdf1 << "\n"
<< " x: " << x << "\n"
<< " y: " << y << "\n"
<< " rho: " << corr);
}
}
}
struct BivariateStudentTestData {
Natural n;
Real rho;
Real x;
Real y;
Real result;
};
class InverseNonCentralChiSquared {
public:
InverseNonCentralChiSquared(Real df, Real ncp)
: dist_(df, ncp) {}
Real operator()(Real x) const {
return boost::math::quantile(dist_, x);
}
private:
const boost::math::non_central_chi_squared_distribution<Real> dist_;
};
BOOST_AUTO_TEST_CASE(testNormal) {
BOOST_TEST_MESSAGE("Testing normal distributions...");
InverseCumulativeNormal invCumStandardNormal;
Real check = invCumStandardNormal(0.5);
if (check != 0.0e0) {
BOOST_ERROR("C++ inverse cumulative of the standard normal at 0.5 is "
<< std::scientific << check
<< "\n instead of zero: something is wrong!");
}
NormalDistribution normal(average,sigma);
CumulativeNormalDistribution cum(average,sigma);
InverseCumulativeNormal invCum(average,sigma);
Size numberOfStandardDeviation = 6;
Real xMin = average - numberOfStandardDeviation*sigma,
xMax = average + numberOfStandardDeviation*sigma;
Size N = 100001;
Real h = (xMax-xMin)/(N-1);
std::vector<Real> x(N), y(N), yd(N), temp(N), diff(N);
Size i;
for (i=0; i<N; i++)
x[i] = xMin+h*i;
std::transform(x.begin(), x.end(), y.begin(), gaussian);
std::transform(x.begin(), x.end(), yd.begin(), gaussianDerivative);
// check that normal = Gaussian
std::transform(x.begin(), x.end(), temp.begin(), normal);
std::transform(y.begin(), y.end(), temp.begin(), diff.begin(), std::minus<>());
Real e = norm(diff.begin(), diff.end(), h);
if (e > 1.0e-16) {
BOOST_ERROR("norm of C++ NormalDistribution minus analytic Gaussian: "
<< std::scientific << e << "\n"
<< "tolerance exceeded");
}
// check that invCum . cum = identity
std::transform(x.begin(), x.end(), temp.begin(), cum);
std::transform(temp.begin(), temp.end(), temp.begin(), invCum);
std::transform(x.begin(), x.end(), temp.begin(), diff.begin(), std::minus<>());
e = norm(diff.begin(), diff.end(), h);
if (e > 1.0e-7) {
BOOST_ERROR("norm of invCum . cum minus identity: "
<< std::scientific << e << "\n"
<< "tolerance exceeded");
}
MaddockInverseCumulativeNormal mInvCum(average, sigma);
std::transform(x.begin(), x.end(), diff.begin(),
[&](Real x) -> Real {
return x - mInvCum(cum(x));
});
e = norm(diff.begin(), diff.end(), h);
if (e > 1.0e-7) {
BOOST_ERROR("norm of MaddokInvCum . cum minus identity: "
<< std::scientific << e << "\n"
<< "tolerance exceeded");
}
// check that cum.derivative = Gaussian
for (i=0; i<x.size(); i++)
temp[i] = cum.derivative(x[i]);
std::transform(y.begin(), y.end(), temp.begin(), diff.begin(), std::minus<>());
e = norm(diff.begin(), diff.end(), h);
if (e > 1.0e-16) {
BOOST_ERROR(
"norm of C++ Cumulative.derivative minus analytic Gaussian: "
<< std::scientific << e << "\n"
<< "tolerance exceeded");
}
// check that normal.derivative = gaussianDerivative
for (i=0; i<x.size(); i++)
temp[i] = normal.derivative(x[i]);
std::transform(yd.begin(), yd.end(), temp.begin(), diff.begin(), std::minus<>());
e = norm(diff.begin(), diff.end(), h);
if (e > 1.0e-16) {
BOOST_ERROR("norm of C++ Normal.derivative minus analytic derivative: "
<< std::scientific << e << "\n"
<< "tolerance exceeded");
}
}
BOOST_AUTO_TEST_CASE(testBivariate) {
BOOST_TEST_MESSAGE("Testing bivariate cumulative normal distribution...");
checkBivariateAtZero<BivariateCumulativeNormalDistributionDr78>(
"Drezner 1978", 1.0e-6);
checkBivariate<BivariateCumulativeNormalDistributionDr78>("Drezner 1978");
// due to relative low accuracy of Dr78, it does not pass with a
// smaller perturbation
checkBivariateTail<BivariateCumulativeNormalDistributionDr78>(
"Drezner 1978", 1.0e-5);
checkBivariateAtZero<BivariateCumulativeNormalDistributionWe04DP>(
"West 2004", 1.0e-15);
checkBivariate<BivariateCumulativeNormalDistributionWe04DP>("West 2004");
checkBivariateTail<BivariateCumulativeNormalDistributionWe04DP>(
"West 2004", 1.0e-6);
checkBivariateTail<BivariateCumulativeNormalDistributionWe04DP>(
"West 2004", 1.0e-8);
}
BOOST_AUTO_TEST_CASE(testPoisson) {
BOOST_TEST_MESSAGE("Testing Poisson distribution...");
for (Real mean=0.0; mean<=10.0; mean+=0.5) {
BigNatural i = 0;
PoissonDistribution pdf(mean);
Real calculated = pdf(i);
Real logHelper = -mean;
Real expected = std::exp(logHelper);
Real error = std::fabs(calculated-expected);
if (error > 1.0e-16)
BOOST_ERROR("Poisson pdf(" << mean << ")(" << i << ")\n"
<< std::setprecision(16)
<< " calculated: " << calculated << "\n"
<< " expected: " << expected << "\n"
<< " error: " << error);
for (i=1; i<25; i++) {
calculated = pdf(i);
if (mean == 0.0) {
expected = 0.0;
} else {
logHelper = logHelper+std::log(mean)-std::log(Real(i));
expected = std::exp(logHelper);
}
error = std::fabs(calculated-expected);
if (error>1.0e-13)
BOOST_ERROR("Poisson pdf(" << mean << ")(" << i << ")\n"
<< std::setprecision(13)
<< " calculated: " << calculated << "\n"
<< " expected: " << expected << "\n"
<< " error: " << error);
}
}
}
BOOST_AUTO_TEST_CASE(testCumulativePoisson) {
BOOST_TEST_MESSAGE("Testing cumulative Poisson distribution...");
for (Real mean=0.0; mean<=10.0; mean+=0.5) {
BigNatural i = 0;
CumulativePoissonDistribution cdf(mean);
Real cumCalculated = cdf(i);
Real logHelper = -mean;
Real cumExpected = std::exp(logHelper);
Real error = std::fabs(cumCalculated-cumExpected);
if (error>1.0e-13)
BOOST_ERROR("Poisson cdf(" << mean << ")(" << i << ")\n"
<< std::setprecision(13)
<< " calculated: " << cumCalculated << "\n"
<< " expected: " << cumExpected << "\n"
<< " error: " << error);
for (i=1; i<25; i++) {
cumCalculated = cdf(i);
if (mean == 0.0) {
cumExpected = 1.0;
} else {
logHelper = logHelper+std::log(mean)-std::log(Real(i));
cumExpected += std::exp(logHelper);
}
error = std::fabs(cumCalculated-cumExpected);
if (error>1.0e-12)
BOOST_ERROR("Poisson cdf(" << mean << ")(" << i << ")\n"
<< std::setprecision(12)
<< " calculated: " << cumCalculated << "\n"
<< " expected: " << cumExpected << "\n"
<< " error: " << error);
}
}
}
BOOST_AUTO_TEST_CASE(testInverseCumulativePoisson) {
BOOST_TEST_MESSAGE("Testing inverse cumulative Poisson distribution...");
InverseCumulativePoisson icp(1.0);
Real data[] = { 0.2,
0.5,
0.9,
0.98,
0.99,
0.999,
0.9999,
0.99995,
0.99999,
0.999999,
0.9999999,
0.99999999
};
for (Size i=0; i<std::size(data); i++) {
if (!close(icp(data[i]), static_cast<Real>(i))) {
BOOST_ERROR(std::setprecision(8)
<< "failed to reproduce known value for x = "
<< data[i] << "\n"
<< " calculated: " << icp(data[i]) << "\n"
<< " expected: " << Real(i));
}
}
}
BOOST_AUTO_TEST_CASE(testBivariateCumulativeStudent) {
BOOST_TEST_MESSAGE(
"Testing bivariate cumulative Student t distribution...");
Real xs[14] = { 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00 };
Natural ns[20] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 60, 90, 120, 150, 300, 600 };
// Part of table 1 from the reference paper
Real expected1[280] = {
0.33333, 0.50000, 0.63497, 0.72338, 0.78063, 0.81943, 0.84704, 0.88332, 0.90590, 0.92124, 0.93231, 0.94066, 0.94719, 0.95243,
0.33333, 0.52017, 0.68114, 0.78925, 0.85607, 0.89754, 0.92417, 0.95433, 0.96978, 0.97862, 0.98411, 0.98774, 0.99026, 0.99208,
0.33333, 0.52818, 0.70018, 0.81702, 0.88720, 0.92812, 0.95238, 0.97667, 0.98712, 0.99222, 0.99497, 0.99657, 0.99756, 0.99821,
0.33333, 0.53245, 0.71052, 0.83231, 0.90402, 0.94394, 0.96612, 0.98616, 0.99353, 0.99664, 0.99810, 0.99885, 0.99927, 0.99951,
0.33333, 0.53510, 0.71701, 0.84196, 0.91449, 0.95344, 0.97397, 0.99095, 0.99637, 0.99836, 0.99918, 0.99956, 0.99975, 0.99985,
0.33333, 0.53689, 0.72146, 0.84862, 0.92163, 0.95972, 0.97893, 0.99365, 0.99779, 0.99913, 0.99962, 0.99982, 0.99990, 0.99995,
0.33333, 0.53819, 0.72470, 0.85348, 0.92679, 0.96415, 0.98230, 0.99531, 0.99857, 0.99950, 0.99981, 0.99992, 0.99996, 0.99998,
0.33333, 0.53917, 0.72716, 0.85719, 0.93070, 0.96743, 0.98470, 0.99639, 0.99903, 0.99970, 0.99990, 0.99996, 0.99998, 0.99999,
0.33333, 0.53994, 0.72909, 0.86011, 0.93375, 0.96995, 0.98650, 0.99713, 0.99931, 0.99981, 0.99994, 0.99998, 0.99999, 1.00000,
0.33333, 0.54056, 0.73065, 0.86247, 0.93621, 0.97194, 0.98788, 0.99766, 0.99950, 0.99988, 0.99996, 0.99999, 1.00000, 1.00000,
0.33333, 0.54243, 0.73540, 0.86968, 0.94362, 0.97774, 0.99168, 0.99890, 0.99985, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54338, 0.73781, 0.87336, 0.94735, 0.98053, 0.99337, 0.99932, 0.99993, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54395, 0.73927, 0.87560, 0.94959, 0.98216, 0.99430, 0.99952, 0.99996, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54433, 0.74025, 0.87709, 0.95108, 0.98322, 0.99489, 0.99963, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54528, 0.74271, 0.88087, 0.95482, 0.98580, 0.99623, 0.99983, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54560, 0.74354, 0.88215, 0.95607, 0.98663, 0.99664, 0.99987, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54576, 0.74396, 0.88279, 0.95669, 0.98704, 0.99683, 0.99989, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54586, 0.74420, 0.88317, 0.95706, 0.98729, 0.99695, 0.99990, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54605, 0.74470, 0.88394, 0.95781, 0.98777, 0.99717, 0.99992, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.33333, 0.54615, 0.74495, 0.88432, 0.95818, 0.98801, 0.99728, 0.99993, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000
};
// Part of table 2 from the reference paper
Real expected2[280] = {
0.16667, 0.36554, 0.54022, 0.65333, 0.72582, 0.77465, 0.80928, 0.85466, 0.88284, 0.90196, 0.91575, 0.92616, 0.93429, 0.94081,
0.16667, 0.38889, 0.59968, 0.73892, 0.82320, 0.87479, 0.90763, 0.94458, 0.96339, 0.97412, 0.98078, 0.98518, 0.98823, 0.99044,
0.16667, 0.39817, 0.62478, 0.77566, 0.86365, 0.91391, 0.94330, 0.97241, 0.98483, 0.99086, 0.99410, 0.99598, 0.99714, 0.99790,
0.16667, 0.40313, 0.63863, 0.79605, 0.88547, 0.93396, 0.96043, 0.98400, 0.99256, 0.99614, 0.99782, 0.99868, 0.99916, 0.99944,
0.16667, 0.40620, 0.64740, 0.80900, 0.89902, 0.94588, 0.97007, 0.98972, 0.99591, 0.99816, 0.99909, 0.99951, 0.99972, 0.99983,
0.16667, 0.40829, 0.65345, 0.81794, 0.90820, 0.95368, 0.97607, 0.99290, 0.99755, 0.99904, 0.99958, 0.99980, 0.99989, 0.99994,
0.16667, 0.40980, 0.65788, 0.82449, 0.91482, 0.95914, 0.98010, 0.99482, 0.99844, 0.99946, 0.99979, 0.99991, 0.99996, 0.99998,
0.16667, 0.41095, 0.66126, 0.82948, 0.91981, 0.96314, 0.98295, 0.99605, 0.99895, 0.99968, 0.99989, 0.99996, 0.99998, 0.99999,
0.16667, 0.41185, 0.66393, 0.83342, 0.92369, 0.96619, 0.98506, 0.99689, 0.99926, 0.99980, 0.99994, 0.99998, 0.99999, 1.00000,
0.16667, 0.41257, 0.66608, 0.83661, 0.92681, 0.96859, 0.98667, 0.99748, 0.99946, 0.99987, 0.99996, 0.99999, 1.00000, 1.00000,
0.16667, 0.41476, 0.67268, 0.84633, 0.93614, 0.97550, 0.99103, 0.99884, 0.99984, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41586, 0.67605, 0.85129, 0.94078, 0.97877, 0.99292, 0.99930, 0.99993, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41653, 0.67810, 0.85430, 0.94356, 0.98066, 0.99396, 0.99950, 0.99996, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41698, 0.67947, 0.85632, 0.94540, 0.98189, 0.99461, 0.99962, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41810, 0.68294, 0.86141, 0.94998, 0.98483, 0.99607, 0.99982, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41847, 0.68411, 0.86312, 0.95149, 0.98577, 0.99651, 0.99987, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41866, 0.68470, 0.86398, 0.95225, 0.98623, 0.99672, 0.99989, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41877, 0.68505, 0.86449, 0.95270, 0.98650, 0.99684, 0.99990, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41900, 0.68576, 0.86552, 0.95360, 0.98705, 0.99707, 0.99992, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
0.16667, 0.41911, 0.68612, 0.86604, 0.95405, 0.98731, 0.99719, 0.99993, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000
};
Real tolerance = 1.0e-5;
for (Size i=0; i < std::size(ns); ++i) {
BivariateCumulativeStudentDistribution f1(ns[i], 0.5);
BivariateCumulativeStudentDistribution f2(ns[i], -0.5);
for (Size j=0; j < std::size(xs); ++j) {
Real calculated1 = f1(xs[j], xs[j]);
Real reference1 = expected1[i*std::size(xs)+j];
Real calculated2 = f2(xs[j], xs[j]);
Real reference2 = expected2[i*std::size(xs)+j];
if (std::fabs(calculated1 - reference1) > tolerance)
BOOST_ERROR("Failed to reproduce CDF value at " << xs[j] <<
"\n calculated: " << calculated1 <<
"\n expected: " << reference1);
if (std::fabs(calculated2 - reference2) > tolerance)
BOOST_ERROR("Failed to reproduce CDF value at " << xs[j] <<
"\n calculated: " << calculated2 <<
"\n expected: " << reference1);
}
}
// a few more random cases
BivariateStudentTestData cases[] = {
{2, -1.0, 5.0, 8.0, 0.973491},
{2, 1.0, -2.0, 8.0, 0.091752},
{2, 1.0, 5.25, -9.5, 0.005450},
{3, -0.5, -5.0, -5.0, 0.000220},
{4, -1.0, -8.0, 7.5, 0.0},
{4, 0.5, -5.5, 10.0, 0.002655},
{4, 1.0, -5.0, 6.0, 0.003745},
{4, 1.0, 6.0, 5.5, 0.997336},
{5, -0.5, -7.0, -6.25, 0.000004},
{5, -0.5, 3.75, -7.25, 0.000166},
{5, -0.5, 7.75, -1.25, 0.133073},
{6, 0.0, 7.5, 3.25, 0.991149},
{7, -0.5, -1.0, -8.5, 0.000001},
{7, -1.0, -4.25, -4.0, 0.0},
{7, 0.0, 0.5, -2.25, 0.018819},
{8, -1.0, 8.25, 1.75, 0.940866},
{8, 0.0, 2.25, 4.75, 0.972105},
{9, -0.5, -4.0, 8.25, 0.001550},
{9, -1.0, -1.25, -8.75, 0.0},
{9, -1.0, 5.75, -6.0, 0.0},
{9, 0.5, -6.5, -9.5, 0.000001},
{9, 1.0, -2.0, 9.25, 0.038276},
{10, -1.0, -0.5, 6.0, 0.313881},
{10, 0.5, 0.0, 9.25, 0.5},
{10, 0.5, 6.75, -2.25, 0.024090},
{10, 1.0, -1.75, -1.0, 0.055341},
{15, 0.0, -1.25, -4.75, 0.000029},
{15, 0.0, -2.0, -1.5, 0.003411},
{15, 0.5, 3.0, -3.25, 0.002691},
{20, -0.5, 2.0, -1.25, 0.098333},
{20, -1.0, 3.0, 8.0, 0.996462},
{20, 0.0, -7.5, 1.5, 0.0},
{20, 0.5, 1.25, 9.75, 0.887136},
{25, -1.0, -4.25, 5.0, 0.000111},
{25, 0.5, 9.5, -1.5, 0.073069},
{25, 1.0, -6.5, -3.25, 0.0},
{30, -1.0, -7.75, 10.0, 0.0},
{30, 1.0, 0.5, 9.5, 0.689638},
{60, -1.0, -3.5, -8.25, 0.0},
{60, -1.0, 4.25, 0.75, 0.771869},
{60, -1.0, 5.75, 3.75, 0.9998},
{60, 0.5, -4.5, 8.25, 0.000016},
{60, 1.0, 6.5, -4.0, 0.000088},
{90, -0.5, -3.75, -2.75, 0.0},
{90, 0.5, 8.75, -7.0, 0.0},
{120, 0.0, -3.5, -9.25, 0.0},
{120, 0.0, -8.25, 5.0, 0.0},
{120, 1.0, -0.75, 3.75, 0.227361},
{120, 1.0, -3.5, -8.0, 0.0},
{150, 0.0, 10.0, -1.75, 0.041082},
{300, -0.5, -6.0, 3.75, 0.0},
{300, -0.5, 3.5, -4.5, 0.000004},
{300, 0.0, 6.5, -5.0, 0.0},
{600, -0.5, 9.25, 1.5, 0.93293},
{600, -1.0, -9.25, 1.5, 0.0},
{600, 0.5, -5.0, 8.0, 0.0},
{600, 1.0, -2.75, -9.0, 0.0},
{1000, -0.5, -2.5, 0.25, 0.000589},
{1000, -0.5, 3.0, 1.0, 0.839842},
{2000, -1.0, 9.0, -4.75, 0.000001},
{2000, 0.5, 9.75, 7.25, 1.0},
{2000, 1.0, 0.75, -9.0, 0.0},
{5000, -0.5, 9.75, 5.5, 1.0},
{5000, -1.0, 6.0, 1.0, 0.841321},
{5000, 1.0, 4.0, -7.75, 0.0},
{10000, 0.5, 1.5, 6.0, 0.933177}
};
tolerance = 1.0e-6;
for (auto& i : cases) {
BivariateCumulativeStudentDistribution f(i.n, i.rho);
Real calculated = f(i.x, i.y);
Real expected = i.result;
if (std::fabs(calculated - expected) > tolerance)
BOOST_ERROR("Failed to reproduce CDF value:"
<< "\n n: " << i.n << "\n rho: " << i.rho << "\n x: " << i.x
<< "\n y: " << i.y << "\n calculated: " << calculated
<< "\n expected: " << expected);
}
}
BOOST_AUTO_TEST_CASE(testBivariateCumulativeStudentVsBivariate) {
BOOST_TEST_MESSAGE(
"Testing bivariate cumulative Student t distribution for large N...");
Natural n = 10000; // for this value, the distribution should be
// close to a bivariate normal distribution.
for (Real rho = -1.0; rho < 1.01; rho += 0.25) {
BivariateCumulativeStudentDistribution T(n, rho);
BivariateCumulativeNormalDistribution N(rho);
Real avgDiff = 0.0;
Size m = 0;
Real tolerance = 4.0e-5;
for (Real x = -10; x < 10.1; x += 0.5) {
for (Real y = -10; y < 10.1; y += 0.5) {
Real calculated = T(x, y);
Real expected = N(x, y);
Real diff = std::fabs(calculated - expected);
if (diff > tolerance)
BOOST_ERROR("Failed to reproduce limit value:" <<
"\n rho: " << rho <<
"\n x: " << x <<
"\n y: " << y <<
"\n calculated: " << calculated <<
"\n expected: " << expected);
avgDiff += diff;
++m;
}
}
avgDiff /= m;
if (avgDiff > 3.0e-6)
BOOST_ERROR("Failed to reproduce average limit value:" <<
"\n rho: " << rho <<
"\n average error: " << avgDiff);
}
}
BOOST_AUTO_TEST_CASE(testInvCDFviaStochasticCollocation) {
BOOST_TEST_MESSAGE(
"Testing inverse CDF based on stochastic collocation...");
const Real k = 3.0;
const Real lambda = 1.0;
const InverseCumulativeNormal invNormalCDF;
const CumulativeNormalDistribution normalCDF;
const InverseNonCentralChiSquared invCDF(k, lambda);
const StochasticCollocationInvCDF scInvCDF10(invCDF, 10);
// low precision
for (Real x=-3.0; x < 3.0; x+=0.1) {
const Real u = normalCDF(x);
const Real calculated1 = scInvCDF10(u);
const Real calculated2 = scInvCDF10.value(x);
const Real expected = invCDF(u);
if (std::fabs(calculated1 - calculated2) > 1e-6) {
BOOST_FAIL("Failed to reproduce equal stochastic collocation "
"inverse CDF" <<
"\n x: " << x <<
"\n calculated via normal distribution : "
<< calculated2 <<
"\n calculated via uniform distribution: "
<< calculated1 <<
"\n diff: " << calculated1 - calculated2);
}
const Real tol = 1e-2;
if (std::fabs(calculated2 - expected) > tol) {
BOOST_FAIL("Failed to reproduce invCDF with "
"stochastic collocation method" <<
"\n x: " << x <<
"\n invCDF :" << expected <<
"\n scInvCDF: " << calculated2 <<
"\n diff : " << std::fabs(expected-calculated2) <<
"\n tol : " << tol);
}
}
// high precision
const StochasticCollocationInvCDF scInvCDF30(invCDF, 30, 0.9999999);
for (Real x=-4.0; x < 4.0; x+=0.1) {
const Real u = normalCDF(x);
const Real expected = invCDF(u);
const Real calculated = scInvCDF30(u);
const Real tol = 1e-6;
if (std::fabs(calculated - expected) > tol) {
BOOST_FAIL("Failed to reproduce invCDF with "
"stochastic collocation method" <<
"\n x: " << x <<
"\n invCDF :" << expected <<
"\n scInvCDF: " << calculated <<
"\n diff : " << std::fabs(expected-calculated) <<
"\n tol : " << tol);
}
}
}
BOOST_AUTO_TEST_CASE(testSankaranApproximation) {
BOOST_TEST_MESSAGE("Testing Sankaran approximation for the "
"non-central cumulative chi-square distribution...");
const Real dfs[] = {2,2,2,4,4};
const Real ncps[] = {1,2,3,1,2,3};
const Real tol = 0.01;
for (Real df : dfs) {
for (Real ncp : ncps) {
const NonCentralCumulativeChiSquareDistribution d(df, ncp);
const NonCentralCumulativeChiSquareSankaranApprox sankaran(df, ncp);
for (Real x=0.25; x < 10; x+=0.1) {
const Real expected = d(x);
const Real calculated = sankaran(x);
const Real diff = std::fabs(expected - calculated);
if (diff > tol) {
BOOST_ERROR("Failed to match accuracy of Sankaran approximation"""
"\n df : " << df <<
"\n ncp : " << ncp <<
"\n x : " << x <<
"\n expected : " << expected <<
"\n calculated: " << calculated <<
"\n diff : " << diff <<
"\n tol : " << tol);
}
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|