1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Joseph Wang
Copyright (C) 2009 Liquidnet Holdings, Inc.
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/fastfouriertransform.hpp>
#include <ql/math/array.hpp>
#include <complex>
#include <vector>
#include <functional>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(FastFourierTransformTests)
BOOST_AUTO_TEST_CASE(testSimple) {
BOOST_TEST_MESSAGE("Testing complex direct FFT...");
typedef std::complex<Real> cx;
cx a[] = { cx(0,0), cx(1,1), cx(3,3), cx(4,4),
cx(4,4), cx(3,3), cx(1,1), cx(0,0) };
cx b[8];
FastFourierTransform fft(3);
fft.transform(a, a+8, b);
cx expected[] = { cx(16,16), cx(-4.8284,-11.6569),
cx(0,0), cx(-0.3431,0.8284),
cx(0,0), cx(0.8284, -0.3431),
cx(0,0), cx(-11.6569,-4.8284) };
for (size_t i = 0; i<8; i++) {
if ((std::fabs(b[i].real() - expected[i].real()) > 1.0e-2) ||
(std::fabs(b[i].imag() - expected[i].imag()) > 1.0e-2))
BOOST_ERROR("Convolution(" << i << ")\n"
<< std::setprecision(4) << std::scientific
<< " calculated: " << b[i] << "\n"
<< " expected: " << expected[i]);
}
}
BOOST_AUTO_TEST_CASE(testInverse) {
BOOST_TEST_MESSAGE("Testing convolution via inverse FFT...");
Array x(3);
x[0] = 1;
x[1] = 2;
x[2] = 3;
size_t order = FastFourierTransform::min_order(x.size())+1;
FastFourierTransform fft(order);
size_t nFrq = fft.output_size();
std::vector< std::complex<Real> > ft (nFrq);
std::vector< Real > tmp (nFrq);
std::complex<Real> z = std::complex<Real>();
fft.inverse_transform(x.begin(), x.end(), ft.begin());
for (Size i=0; i<nFrq; ++i) {
tmp[i] = std::norm(ft[i]);
ft[i] = z;
}
fft.inverse_transform(tmp.begin(), tmp.end(), ft.begin());
// 0
Real calculated = ft[0].real() / nFrq;
Real expected = x[0]*x[0] + x[1]*x[1] + x[2]*x[2];
if (fabs (calculated - expected) > 1.0e-10)
BOOST_ERROR("Convolution(0)\n"
<< std::setprecision(16) << std::scientific
<< " calculated: " << calculated << "\n"
<< " expected: " << expected);
// 1
calculated = ft[1].real() / nFrq;
expected = x[0]*x[1] + x[1]*x[2];
if (fabs (calculated - expected) > 1.0e-10)
BOOST_ERROR("Convolution(1)\n"
<< std::setprecision(16) << std::scientific
<< " calculated: " << calculated << "\n"
<< " expected: " << expected);
// 2
calculated = ft[2].real() / nFrq;
expected = x[0]*x[2];
if (fabs (calculated - expected) > 1.0e-10)
BOOST_ERROR("Convolution(1)\n"
<< std::setprecision(16) << std::scientific
<< " calculated: " << calculated << "\n"
<< " expected: " << expected);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|