1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2018 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/math/statistics/generalstatistics.hpp>
#include <ql/pricingengines/vanilla/analyticcevengine.hpp>
#include <ql/pricingengines/vanilla/fdcevvanillaengine.hpp>
#include <ql/methods/finitedifferences/utilities/cevrndcalculator.hpp>
#include <ql/shared_ptr.hpp>
using namespace QuantLib;
using boost::unit_test_framework::test_suite;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(FdCevTests)
class ExpectationFct {
public:
ExpectationFct(const CEVRNDCalculator& calculator, Time t)
: t_(t), calculator_(calculator) { }
Real operator()(Real f) const { return f*calculator_.pdf(f, t_); }
private:
const Time t_;
const CEVRNDCalculator& calculator_;
};
BOOST_AUTO_TEST_CASE(testLocalMartingale) {
BOOST_TEST_MESSAGE(
"Testing local martingale property of CEV process with PDF...");
const Time t = 1.0;
const Real f0 = 2.1;
const Real alpha = 1.75;
const Real betas[] = {-2.4, 0.23, 0.9, 1.1, 1.5};
for (Real beta : betas) {
const CEVRNDCalculator rndCalculator(f0, alpha, beta);
const Real eps = 1e-10;
const Real tol = 100*eps;
const Real upperBound = 10*rndCalculator.invcdf(1-eps, t);
const Real expectationValue = GaussLobattoIntegral(10000, eps)(
ExpectationFct(rndCalculator, t), QL_EPSILON, upperBound);
const Real diff = expectationValue-f0;
if (beta < 1.0 && std::fabs(diff) > tol) {
BOOST_ERROR("CEV process should be a martingale for beta < 1.0"
<< "\n expected: " << f0
<< std::scientific
<< "\n difference " << diff
<< "\n tolerance: " << tol);
}
if (beta > 1.0 && diff > -tol) {
BOOST_ERROR("CEV process should only be a local martingale "
"for beta > 1.0. Expectation is E[F_t|F_0] < F_0"
<< "\n E[F_t|F_0]: " << expectationValue
<< "\n F_0: " << f0);
}
// check local martingale property with Monte-Carlo simulation
const Size nSims = 5000;
const Size nSteps = 2000;
const Real dt = t / nSteps;
const Real sqrtDt = std::sqrt(dt);
GeneralStatistics stat;
const PseudoRandom::rng_type mt(MersenneTwisterUniformRng(42));
if (beta > 1.2) {
for (Size i=0; i < nSims; ++i) {
Real f = f0;
for (Size j=0; j < nSteps; ++j) {
f += alpha * std::pow(f, beta) * mt.next().value * sqrtDt;
f = std::max(0.0, f);
if (f == 0.0) break; // absorbing boundary
}
stat.add(f - f0);
}
const Real calculated = stat.mean();
const Real error = stat.errorEstimate();
if (std::fabs(calculated - diff) > 2.35*error) {
BOOST_ERROR(
"failed to calculate local martingale property "
"by Monte-Carlo Simulation for beta > 1.0. "
<< "\n E[F_t|F_0] : " << expectationValue
<< "\n E_MC[F_t|F_0]: " << calculated + f0
<< "\n error_MC : " << error
<< "\n difference : " << std::fabs(calculated - diff)
<< "\n tolerance : " << 2.35*error);
}
}
}
}
BOOST_AUTO_TEST_CASE(testFdmCevOp) {
BOOST_TEST_MESSAGE(
"Testing FDM constant elasticity of variance (CEV) operator...");
const Date today = Date(22, February, 2018);
const DayCounter dc = Actual365Fixed();
Settings::instance().evaluationDate() = today;
const Date maturityDate = today + Period(12, Months);
const Real strike = 2.3;
const Option::Type optionTypes[] = { Option::Call, Option::Put};
const ext::shared_ptr<Exercise> exercise =
ext::make_shared<EuropeanExercise>(maturityDate);
for (auto optionType : optionTypes) {
const ext::shared_ptr<PlainVanillaPayoff> payoff =
ext::make_shared<PlainVanillaPayoff>(optionType, strike);
const ext::shared_ptr<YieldTermStructure> rTS =
flatRate(today, 0.15, dc);
const Real f0 = 2.1;
const Real alpha = 0.75;
const Real betas[] = { -2.0, -0.5, 0.45, 0.6, 0.9, 1.45 };
for (Real beta : betas) {
VanillaOption option(payoff, exercise);
option.setPricingEngine(ext::make_shared<AnalyticCEVEngine>(
f0, alpha, beta, Handle<YieldTermStructure>(rTS)));
const Real analyticNPV = option.NPV();
const Real eps = 1e-3;
option.setPricingEngine(ext::make_shared<AnalyticCEVEngine>(
f0*(1+eps), alpha, beta, Handle<YieldTermStructure>(rTS)));
const Real analyticUpNPV = option.NPV();
option.setPricingEngine(ext::make_shared<AnalyticCEVEngine>(
f0*(1-eps), alpha, beta, Handle<YieldTermStructure>(rTS)));
const Real analyticDownNPV = option.NPV();
const Real analyticDelta = (analyticUpNPV - analyticDownNPV)
/(2*eps*f0);
option.setPricingEngine(ext::make_shared<FdCEVVanillaEngine>(
f0, alpha, beta, Handle<YieldTermStructure>(rTS),
100, 1000, 1, 1.0, 1e-6));
const Real calculatedNPV = option.NPV();
const Real calculatedDelta = option.delta();
const Real tol = 0.01;
if (std::fabs(calculatedNPV - analyticNPV) > tol
|| std::fabs(calculatedDelta - analyticDelta) > tol) {
BOOST_ERROR(
"failed to calculate vanilla option prices/delta "
<< "\n beta : " << beta
<< "\n option type : "
<< ((payoff->optionType() == Option::Call) ? "Call" : "Put")
<< "\n analytic npv : " << analyticNPV
<< "\n pde npv : " << calculatedNPV
<< "\n npv difference : "
<< std::fabs(calculatedNPV - analyticNPV)
<< "\n tolerance : " << tol
<< "\n analytic delta : " << analyticDelta
<< "\n pde delta : " << calculatedDelta
<< "\n delta difference: "
<< std::fabs(calculatedDelta - analyticDelta)
<< "\n tolerance : " << tol);
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|