File: inflationvolatility.cpp

package info (click to toggle)
quantlib 1.39-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,264 kB
  • sloc: cpp: 396,561; makefile: 6,539; python: 272; sh: 154; lisp: 86
file content (395 lines) | stat: -rw-r--r-- 16,580 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Chris Kenyon

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
 */

#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/interpolations/cubicinterpolation.hpp>
#include <ql/math/interpolations/bicubicsplineinterpolation.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/termstructures/inflation/interpolatedyoyinflationcurve.hpp>
#include <ql/cashflows/inflationcoupon.hpp>
#include <ql/cashflows/inflationcouponpricer.hpp>
#include <ql/experimental/inflation/yoycapfloortermpricesurface.hpp>
#include <ql/pricingengines/inflation/inflationcapfloorengines.hpp>
#include <ql/experimental/inflation/yoyoptionletstripper.hpp>
#include <ql/experimental/inflation/kinterpolatedyoyoptionletvolatilitysurface.hpp>
#include <ql/experimental/inflation/interpolatedyoyoptionletstripper.hpp>
#include <ql/cashflows/capflooredinflationcoupon.hpp>
#include <ql/indexes/inflation/euhicp.hpp>
#include <ql/indexes/inflation/ukrpi.hpp>

using namespace QuantLib;
using namespace boost::unit_test;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(InflationVolTests)


// local data globals
Handle<YieldTermStructure> nominalEUR;
Handle<YieldTermStructure> nominalGBP;

RelinkableHandle<YoYInflationTermStructure> yoyEU;
RelinkableHandle<YoYInflationTermStructure> yoyUK;

std::vector<Rate> cStrikesEU;
std::vector<Rate> fStrikesEU;
std::vector<Period> cfMaturitiesEU;
ext::shared_ptr<Matrix> cPriceEU;
ext::shared_ptr<Matrix> fPriceEU;

ext::shared_ptr<YoYInflationIndex> yoyIndexUK;
ext::shared_ptr<YoYInflationIndex> yoyIndexEU;

std::vector<Rate> cStrikesUK;
std::vector<Rate> fStrikesUK;
std::vector<Period> cfMaturitiesUK;
ext::shared_ptr<Matrix> cPriceUK;
ext::shared_ptr<Matrix> fPriceUK;

ext::shared_ptr<InterpolatedYoYCapFloorTermPriceSurface<Bicubic,Cubic> > priceSurfEU;

void reset() {
    nominalEUR = Handle<YieldTermStructure>();
    nominalGBP = Handle<YieldTermStructure>();
    priceSurfEU.reset();
    yoyEU.reset();
    yoyUK.reset();
    yoyIndexUK.reset();
    yoyIndexEU.reset();
    cPriceEU.reset();
    fPriceEU.reset();
    cPriceUK.reset();
    fPriceUK.reset();
    yoyIndexUK.reset();

    cStrikesEU.clear();        
    fStrikesEU.clear();
    cStrikesUK.clear();        
    fStrikesUK.clear();
    cfMaturitiesEU.clear();
    cfMaturitiesUK.clear();
}

void setup() {

    // make sure of the evaluation date
    Date eval = Date(Day(23), Month(11), Year(2007));
    Settings::instance().evaluationDate() = eval;

    yoyIndexUK = ext::make_shared<YoYInflationIndex>(ext::make_shared<UKRPI>(), yoyUK);
    yoyIndexEU = ext::make_shared<YoYInflationIndex>(ext::make_shared<EUHICP>(), yoyEU);

    // nominal yield curve (interpolated; times assume year parts have 365 days)
    Real timesEUR[] = {0.0109589, 0.0684932, 0.263014, 0.317808, 0.567123, 0.816438,
                       1.06575, 1.31507, 1.56438, 2.0137, 3.01918, 4.01644,
                       5.01644, 6.01644, 7.01644, 8.01644, 9.02192, 10.0192,
                       12.0192, 15.0247, 20.0301, 25.0356, 30.0329, 40.0384,
                       50.0466};
    Real ratesEUR[] = {0.0415600, 0.0426840, 0.0470980, 0.0458506, 0.0449550, 0.0439784,
                       0.0431887, 0.0426604, 0.0422925, 0.0424591, 0.0421477, 0.0421853,
                       0.0424016, 0.0426969, 0.0430804, 0.0435011, 0.0439368, 0.0443825,
                       0.0452589, 0.0463389, 0.0472636, 0.0473401, 0.0470629, 0.0461092,
                       0.0450794};

    Real timesGBP[] = {0.008219178, 0.010958904, 0.01369863,  0.019178082,  0.073972603,
                       0.323287671, 0.57260274,  0.821917808, 1.071232877,  1.320547945,
                       1.506849315, 2.002739726, 3.002739726, 4.002739726,  5.005479452,
                       6.010958904, 7.008219178, 8.005479452, 9.008219178, 10.00821918,
                       12.01369863, 15.0109589,  20.01369863, 25.01917808,  30.02191781,
                       40.03287671, 50.03561644, 60.04109589, 70.04931507};
    Real ratesGBP[] = {0.0577363, 0.0582314, 0.0585265, 0.0587165, 0.0596598,
                       0.0612506, 0.0589676, 0.0570512, 0.0556147, 0.0546082,
                       0.0549492, 0.053801, 0.0529333, 0.0524068, 0.0519712,
                       0.0516615, 0.0513711, 0.0510433, 0.0507974, 0.0504833,
                       0.0498998, 0.0490464, 0.04768, 0.0464862, 0.045452,
                       0.0437699, 0.0425311, 0.0420073, 0.041151};

    std::vector <Real> r;
    std::vector <Date> d;
    Size nTimesEUR = std::size(timesEUR);
    Size nTimesGBP = std::size(timesGBP);
    for (Size i = 0; i < nTimesEUR; i++) {
        r.push_back(ratesEUR[i]);
        Size ys = (Size)floor(timesEUR[i]);
        Size ds = (Size)((timesEUR[i]-(Real)ys)*365);
        Date dd = eval + Period(ys,Years) + Period(ds,Days);
        d.push_back( dd );
    }

    ext::shared_ptr<InterpolatedZeroCurve<Cubic> >
        euriborTS(new InterpolatedZeroCurve<Cubic>(d, r, Actual365Fixed()));
    Handle<YieldTermStructure> nominalHeur(euriborTS, false);
    nominalEUR = nominalHeur;   // copy to global

    d.clear();
    r.clear();
    for (Size i = 0; i < nTimesGBP; i++) {
        r.push_back(ratesGBP[i]);
        Size ys = (Size)floor(timesGBP[i]);
        Size ds = (Size)((timesGBP[i]-(Real)ys)*365);
        Date dd = eval + Period(ys,Years) + Period(ds,Days);
        d.push_back( dd );
    }

    ext::shared_ptr<InterpolatedZeroCurve<Cubic> >
        gbpLiborTS(new InterpolatedZeroCurve<Cubic>(d, r, Actual365Fixed()));
    Handle<YieldTermStructure> nominalHgbp(gbpLiborTS, false);
    nominalGBP = nominalHgbp;   // copy to global

    // times = years - lag, where the lag is 2 months or 2/12
    // because this data is derived from cap/floor data that
    // is based on a 2 month lag.

    // note that these are NOT swap rates
    // also not that the first value MUST be in the base period
    // i.e. the first rate is for a negative time
    Real yoyEUrates[] = {0.0237951,
                         0.0238749, 0.0240334, 0.0241934, 0.0243567, 0.0245323,
                         0.0247213, 0.0249348, 0.0251768, 0.0254337, 0.0257258,
                         0.0260217, 0.0263006, 0.0265538, 0.0267803, 0.0269378,
                         0.0270608, 0.0271363, 0.0272, 0.0272512, 0.0272927,
                         0.027317, 0.0273615, 0.0273811, 0.0274063, 0.0274307,
                         0.0274625, 0.027527, 0.0275952, 0.0276734, 0.027794};

    d.clear();
    r.clear();
    // the base date is based on the last published index fixing
    Date baseDate = inflationPeriod(eval - 1*Months, yoyIndexEU->frequency()).first;
    d.push_back(baseDate);
    r.push_back(yoyEUrates[0]);

    // cap maturities are based on the observation lag
    Date capStartDate = TARGET().advance(eval, -2, Months, ModifiedFollowing);
    for (Size i = 1; i < std::size(yoyEUrates); i++) {
        Date dd = TARGET().advance(capStartDate, i, Years, ModifiedFollowing);
        d.push_back(dd);
        r.push_back(yoyEUrates[i]);
    }

    auto pYTSEU =
        ext::make_shared<InterpolatedYoYInflationCurve<Linear>>(
                    eval, d, r, Monthly, Actual365Fixed());
    yoyEU.linkTo(pYTSEU);

    // price data
    const Size ncStrikesEU = 6;
    const Size nfStrikesEU = 6;
    const Size ncfMaturitiesEU = 7;
    Real capStrikesEU[ncStrikesEU] = {0.02, 0.025, 0.03, 0.035, 0.04, 0.05};
    Period capMaturitiesEU[ncfMaturitiesEU] = {3*Years, 5*Years, 7*Years,
                                               10*Years, 15*Years, 20*Years, 30*Years};
    Real capPricesEU[ncStrikesEU][ncfMaturitiesEU] =
        {{116.225, 204.945, 296.285, 434.29, 654.47, 844.775, 1132.33},
         {34.305, 71.575, 114.1, 184.33, 307.595, 421.395, 602.35},
         {6.37, 19.085, 35.635, 66.42, 127.69, 189.685, 296.195},
         {1.325, 5.745, 12.585, 26.945, 58.95, 94.08, 158.985},
         {0.501, 2.37, 5.38, 13.065, 31.91, 53.95, 96.97},
         {0.501, 0.695, 1.47, 4.415, 12.86, 23.75, 46.7}};

    Real floorStrikesEU[nfStrikesEU] = {-0.01, 0.00, 0.005, 0.01, 0.015, 0.02};
    Real floorPricesEU[nfStrikesEU][ncfMaturitiesEU] =
        {{0.501, 0.851, 2.44, 6.645, 16.23, 26.85, 46.365},
         {0.501, 2.236, 5.555, 13.075, 28.46, 44.525, 73.08},
         {1.025, 3.935, 9.095, 19.64, 39.93, 60.375, 96.02},
         {2.465, 7.885, 16.155, 31.6, 59.34, 86.21, 132.045},
         {6.9, 17.92, 32.085, 56.08, 95.95, 132.85, 194.18},
         {23.52, 47.625, 74.085, 114.355, 175.72, 229.565, 316.285}};

    // now load the data into vector and Matrix classes
    cStrikesEU.clear();
    fStrikesEU.clear();
    cfMaturitiesEU.clear();
    for (Real& i : capStrikesEU)
        cStrikesEU.push_back(i);
    for (Real& i : floorStrikesEU)
        fStrikesEU.push_back(i);
    for (auto& i : capMaturitiesEU)
        cfMaturitiesEU.push_back(i);
    ext::shared_ptr<Matrix> tcPriceEU(new Matrix(ncStrikesEU, ncfMaturitiesEU));
    ext::shared_ptr<Matrix> tfPriceEU(new Matrix(nfStrikesEU, ncfMaturitiesEU));
    for(Size i = 0; i < ncStrikesEU; i++) {
        for(Size j = 0; j < ncfMaturitiesEU; j++) {
            (*tcPriceEU)[i][j] = capPricesEU[i][j];
        }
    }
    for(Size i = 0; i < nfStrikesEU; i++) {
        for(Size j = 0; j < ncfMaturitiesEU; j++) {
            (*tfPriceEU)[i][j] = floorPricesEU[i][j];
        }
    }
    cPriceEU = tcPriceEU;   // copy to global
    fPriceEU = tfPriceEU;
}


void setupPriceSurface() {

    // construct:
    //  calendar, business day convention, and day counter are
    //  taken from the nominal base give the reference date for
    //  the inflation options (generally 2 or 3 months before
    //  nominal reference date)
    Natural fixingDays = 0;
    Size lag = 3;// must be 3 because we use an interpolated index (EU)
    Period yyLag = Period(lag,Months);
    DayCounter dc = Actual365Fixed();
    TARGET cal;
    BusinessDayConvention bdc = ModifiedFollowing;
    const ext::shared_ptr<QuantLib::YieldTermStructure>& pn = nominalEUR.currentLink();
    Handle<QuantLib::YieldTermStructure> n(pn,false);
    ext::shared_ptr<InterpolatedYoYCapFloorTermPriceSurface<Bicubic,Cubic> >
        cfEUprices(new InterpolatedYoYCapFloorTermPriceSurface<Bicubic,Cubic>(
                                       fixingDays,
                                       yyLag, yoyIndexEU, CPI::Linear,
                                       n, dc,
                                       cal,    bdc,
                                       cStrikesEU, fStrikesEU, cfMaturitiesEU,
                                       (*cPriceEU), (*fPriceEU)));

    priceSurfEU = cfEUprices;
}


BOOST_AUTO_TEST_CASE(testYoYPriceSurfaceToVol) {
    BOOST_TEST_MESSAGE("Testing conversion from YoY price surface "
                       "to YoY volatility surface...");

    setup();

    // first get the price surface set up
    setupPriceSurface();

    // caplet pricer, recall that setCapletVolatility(Handle<YoYOptionletVolatilitySurface>)
    // exists ... we'll use it with the -Curve variant of the surface
    // test UNIT DISPLACED pricer
    ext::shared_ptr<YoYOptionletVolatilitySurface> pVS;
    Handle<YoYOptionletVolatilitySurface> hVS(pVS, false); // pVS does NOT own whatever it points to later, hence the handle does not either
    ext::shared_ptr<YoYInflationUnitDisplacedBlackCapFloorEngine>
        yoyPricerUD(new YoYInflationUnitDisplacedBlackCapFloorEngine(yoyIndexEU,hVS,nominalEUR)); //hVS
    // N.B. the vol gets set in the stripper ... else no point!

    // cap stripper
    ext::shared_ptr<YoYOptionletStripper> yoyOptionletStripper(
                             new InterpolatedYoYOptionletStripper<Linear>() );

    // now set up all the variables for the stripping
    Natural settlementDays = 0;
    TARGET cal;
    BusinessDayConvention bdc = ModifiedFollowing;
    DayCounter dc = Actual365Fixed();

    ext::shared_ptr<YoYCapFloorTermPriceSurface> capFloorPrices = priceSurfEU;
    Period lag = priceSurfEU->observationLag();

    Real slope = -0.5; //when you have bad data, i.e. very low/constant
    //prices for short dated extreem strikes
    //then you cannot assume constant caplet vol
    //(else arbitrage)
    // N.B. if this is too extreme then can't
    // get a no-arbitrage solution anyway
    // the way the slope is used means that the slope is
    // proportional to the level so higher slopes at
    // the edges when things are more volatile

    // Actually is doesn't matter what the interpolation is because we only
    // intend to use the K values that correspond to quotes ... for model fitting.
    ext::shared_ptr<KInterpolatedYoYOptionletVolatilitySurface<Linear> > yoySurf(new
                    KInterpolatedYoYOptionletVolatilitySurface<Linear>(settlementDays,
                cal, bdc, dc, lag, capFloorPrices, yoyPricerUD, yoyOptionletStripper,
                                                              slope) );

    // now use it for something ... like stating what the T=const lines look like
    const Real volATyear1[] = {
          0.0129, 0.0094, 0.0083, 0.0073, 0.0064,
          0.0058, 0.0042, 0.0046, 0.0053, 0.0064,
          0.0098
    };
    const Real volATyear3[] = {
          0.0080, 0.0058, 0.0051, 0.0045, 0.0040,
          0.0035, 0.0026, 0.0028, 0.0033, 0.0040,
          0.0061
    };

    Date d = yoySurf->baseDate() + Period(1,Years);
    auto someSlice = yoySurf->Dslice(d);

    Size n = someSlice.first.size();
    Real eps = 0.0001;
    for(Size i = 0; i < n; i++){
        QL_REQUIRE( fabs(someSlice.second[i] - volATyear1[i]) < eps,
                   " could not recover 1yr vol: " << someSlice.second[i]
                   << " vs " << volATyear1[i] );
    }

    d = yoySurf->baseDate() + Period(3,Years);
    auto someOtherSlice = yoySurf->Dslice(d);
    n = someOtherSlice.first.size();
    for(Size i = 0; i < n; i++){
        QL_REQUIRE(fabs(someOtherSlice.second[i]-volATyear3[i]) < eps,
                        "could not recover 3yr vol: "
                        << someOtherSlice.second[i]<< " vs " << volATyear3[i] );
    }

    reset();
}

BOOST_AUTO_TEST_CASE(testYoYPriceSurfaceToATM) {
    BOOST_TEST_MESSAGE("Testing conversion from YoY cap-floor surface "
                       "to YoY inflation term structure...");

    setup();

    setupPriceSurface();

    auto yyATMt = priceSurfEU->atmYoYSwapTimeRates();
    auto yyATMd = priceSurfEU->atmYoYSwapDateRates();

    // Real dy = (Real)lag / 12.0;
    const Real crv[] = {0.024586, 0.0247575, 0.0249396, 0.0252596,
                          0.0258498, 0.0262883, 0.0267915};
    const Real swaps[] = {0.024586, 0.0247575, 0.0249396, 0.0252596,
                          0.0258498, 0.0262883, 0.0267915};
    const Real ayoy[] = {0.0247659, 0.0251437, 0.0255945, 0.0265015,
                           0.0280457, 0.0285534, 0.0295884};
    Real eps = 2e-5;
    for(Size i = 0; i < yyATMt.first.size(); i++) {
        QL_REQUIRE(fabs( yyATMt.second[i] - crv[i] ) < eps,
                   "could not recover cached yoy swap curve "
                   << yyATMt.second[i]<< " vs " << crv[i]);
    }

    for(Size i = 0; i < yyATMd.first.size(); i++) {
        QL_REQUIRE(fabs( priceSurfEU->atmYoYSwapRate(yyATMd.first[i])  - swaps[i] ) < eps,
                   "could not recover yoy swap curve "
                   << priceSurfEU->atmYoYSwapRate(yyATMd.first[i]) << " vs " << swaps[i]);
    }
    for(Size i = 0; i < yyATMd.first.size(); i++) {
        QL_REQUIRE(fabs( priceSurfEU->atmYoYRate(yyATMd.first[i])  - ayoy[i] ) < eps,
                   " could not recover cached yoy curve "
                   << priceSurfEU->atmYoYRate(yyATMd.first[i]) << " vs " << ayoy[i]
                   <<" at "<<yyATMd.first[i]);
    }
    reset();
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()