1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Chris Kenyon
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/interpolations/cubicinterpolation.hpp>
#include <ql/math/interpolations/bicubicsplineinterpolation.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/termstructures/inflation/interpolatedyoyinflationcurve.hpp>
#include <ql/cashflows/inflationcoupon.hpp>
#include <ql/cashflows/inflationcouponpricer.hpp>
#include <ql/experimental/inflation/yoycapfloortermpricesurface.hpp>
#include <ql/pricingengines/inflation/inflationcapfloorengines.hpp>
#include <ql/experimental/inflation/yoyoptionletstripper.hpp>
#include <ql/experimental/inflation/kinterpolatedyoyoptionletvolatilitysurface.hpp>
#include <ql/experimental/inflation/interpolatedyoyoptionletstripper.hpp>
#include <ql/cashflows/capflooredinflationcoupon.hpp>
#include <ql/indexes/inflation/euhicp.hpp>
#include <ql/indexes/inflation/ukrpi.hpp>
using namespace QuantLib;
using namespace boost::unit_test;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(InflationVolTests)
// local data globals
Handle<YieldTermStructure> nominalEUR;
Handle<YieldTermStructure> nominalGBP;
RelinkableHandle<YoYInflationTermStructure> yoyEU;
RelinkableHandle<YoYInflationTermStructure> yoyUK;
std::vector<Rate> cStrikesEU;
std::vector<Rate> fStrikesEU;
std::vector<Period> cfMaturitiesEU;
ext::shared_ptr<Matrix> cPriceEU;
ext::shared_ptr<Matrix> fPriceEU;
ext::shared_ptr<YoYInflationIndex> yoyIndexUK;
ext::shared_ptr<YoYInflationIndex> yoyIndexEU;
std::vector<Rate> cStrikesUK;
std::vector<Rate> fStrikesUK;
std::vector<Period> cfMaturitiesUK;
ext::shared_ptr<Matrix> cPriceUK;
ext::shared_ptr<Matrix> fPriceUK;
ext::shared_ptr<InterpolatedYoYCapFloorTermPriceSurface<Bicubic,Cubic> > priceSurfEU;
void reset() {
nominalEUR = Handle<YieldTermStructure>();
nominalGBP = Handle<YieldTermStructure>();
priceSurfEU.reset();
yoyEU.reset();
yoyUK.reset();
yoyIndexUK.reset();
yoyIndexEU.reset();
cPriceEU.reset();
fPriceEU.reset();
cPriceUK.reset();
fPriceUK.reset();
yoyIndexUK.reset();
cStrikesEU.clear();
fStrikesEU.clear();
cStrikesUK.clear();
fStrikesUK.clear();
cfMaturitiesEU.clear();
cfMaturitiesUK.clear();
}
void setup() {
// make sure of the evaluation date
Date eval = Date(Day(23), Month(11), Year(2007));
Settings::instance().evaluationDate() = eval;
yoyIndexUK = ext::make_shared<YoYInflationIndex>(ext::make_shared<UKRPI>(), yoyUK);
yoyIndexEU = ext::make_shared<YoYInflationIndex>(ext::make_shared<EUHICP>(), yoyEU);
// nominal yield curve (interpolated; times assume year parts have 365 days)
Real timesEUR[] = {0.0109589, 0.0684932, 0.263014, 0.317808, 0.567123, 0.816438,
1.06575, 1.31507, 1.56438, 2.0137, 3.01918, 4.01644,
5.01644, 6.01644, 7.01644, 8.01644, 9.02192, 10.0192,
12.0192, 15.0247, 20.0301, 25.0356, 30.0329, 40.0384,
50.0466};
Real ratesEUR[] = {0.0415600, 0.0426840, 0.0470980, 0.0458506, 0.0449550, 0.0439784,
0.0431887, 0.0426604, 0.0422925, 0.0424591, 0.0421477, 0.0421853,
0.0424016, 0.0426969, 0.0430804, 0.0435011, 0.0439368, 0.0443825,
0.0452589, 0.0463389, 0.0472636, 0.0473401, 0.0470629, 0.0461092,
0.0450794};
Real timesGBP[] = {0.008219178, 0.010958904, 0.01369863, 0.019178082, 0.073972603,
0.323287671, 0.57260274, 0.821917808, 1.071232877, 1.320547945,
1.506849315, 2.002739726, 3.002739726, 4.002739726, 5.005479452,
6.010958904, 7.008219178, 8.005479452, 9.008219178, 10.00821918,
12.01369863, 15.0109589, 20.01369863, 25.01917808, 30.02191781,
40.03287671, 50.03561644, 60.04109589, 70.04931507};
Real ratesGBP[] = {0.0577363, 0.0582314, 0.0585265, 0.0587165, 0.0596598,
0.0612506, 0.0589676, 0.0570512, 0.0556147, 0.0546082,
0.0549492, 0.053801, 0.0529333, 0.0524068, 0.0519712,
0.0516615, 0.0513711, 0.0510433, 0.0507974, 0.0504833,
0.0498998, 0.0490464, 0.04768, 0.0464862, 0.045452,
0.0437699, 0.0425311, 0.0420073, 0.041151};
std::vector <Real> r;
std::vector <Date> d;
Size nTimesEUR = std::size(timesEUR);
Size nTimesGBP = std::size(timesGBP);
for (Size i = 0; i < nTimesEUR; i++) {
r.push_back(ratesEUR[i]);
Size ys = (Size)floor(timesEUR[i]);
Size ds = (Size)((timesEUR[i]-(Real)ys)*365);
Date dd = eval + Period(ys,Years) + Period(ds,Days);
d.push_back( dd );
}
ext::shared_ptr<InterpolatedZeroCurve<Cubic> >
euriborTS(new InterpolatedZeroCurve<Cubic>(d, r, Actual365Fixed()));
Handle<YieldTermStructure> nominalHeur(euriborTS, false);
nominalEUR = nominalHeur; // copy to global
d.clear();
r.clear();
for (Size i = 0; i < nTimesGBP; i++) {
r.push_back(ratesGBP[i]);
Size ys = (Size)floor(timesGBP[i]);
Size ds = (Size)((timesGBP[i]-(Real)ys)*365);
Date dd = eval + Period(ys,Years) + Period(ds,Days);
d.push_back( dd );
}
ext::shared_ptr<InterpolatedZeroCurve<Cubic> >
gbpLiborTS(new InterpolatedZeroCurve<Cubic>(d, r, Actual365Fixed()));
Handle<YieldTermStructure> nominalHgbp(gbpLiborTS, false);
nominalGBP = nominalHgbp; // copy to global
// times = years - lag, where the lag is 2 months or 2/12
// because this data is derived from cap/floor data that
// is based on a 2 month lag.
// note that these are NOT swap rates
// also not that the first value MUST be in the base period
// i.e. the first rate is for a negative time
Real yoyEUrates[] = {0.0237951,
0.0238749, 0.0240334, 0.0241934, 0.0243567, 0.0245323,
0.0247213, 0.0249348, 0.0251768, 0.0254337, 0.0257258,
0.0260217, 0.0263006, 0.0265538, 0.0267803, 0.0269378,
0.0270608, 0.0271363, 0.0272, 0.0272512, 0.0272927,
0.027317, 0.0273615, 0.0273811, 0.0274063, 0.0274307,
0.0274625, 0.027527, 0.0275952, 0.0276734, 0.027794};
d.clear();
r.clear();
// the base date is based on the last published index fixing
Date baseDate = inflationPeriod(eval - 1*Months, yoyIndexEU->frequency()).first;
d.push_back(baseDate);
r.push_back(yoyEUrates[0]);
// cap maturities are based on the observation lag
Date capStartDate = TARGET().advance(eval, -2, Months, ModifiedFollowing);
for (Size i = 1; i < std::size(yoyEUrates); i++) {
Date dd = TARGET().advance(capStartDate, i, Years, ModifiedFollowing);
d.push_back(dd);
r.push_back(yoyEUrates[i]);
}
auto pYTSEU =
ext::make_shared<InterpolatedYoYInflationCurve<Linear>>(
eval, d, r, Monthly, Actual365Fixed());
yoyEU.linkTo(pYTSEU);
// price data
const Size ncStrikesEU = 6;
const Size nfStrikesEU = 6;
const Size ncfMaturitiesEU = 7;
Real capStrikesEU[ncStrikesEU] = {0.02, 0.025, 0.03, 0.035, 0.04, 0.05};
Period capMaturitiesEU[ncfMaturitiesEU] = {3*Years, 5*Years, 7*Years,
10*Years, 15*Years, 20*Years, 30*Years};
Real capPricesEU[ncStrikesEU][ncfMaturitiesEU] =
{{116.225, 204.945, 296.285, 434.29, 654.47, 844.775, 1132.33},
{34.305, 71.575, 114.1, 184.33, 307.595, 421.395, 602.35},
{6.37, 19.085, 35.635, 66.42, 127.69, 189.685, 296.195},
{1.325, 5.745, 12.585, 26.945, 58.95, 94.08, 158.985},
{0.501, 2.37, 5.38, 13.065, 31.91, 53.95, 96.97},
{0.501, 0.695, 1.47, 4.415, 12.86, 23.75, 46.7}};
Real floorStrikesEU[nfStrikesEU] = {-0.01, 0.00, 0.005, 0.01, 0.015, 0.02};
Real floorPricesEU[nfStrikesEU][ncfMaturitiesEU] =
{{0.501, 0.851, 2.44, 6.645, 16.23, 26.85, 46.365},
{0.501, 2.236, 5.555, 13.075, 28.46, 44.525, 73.08},
{1.025, 3.935, 9.095, 19.64, 39.93, 60.375, 96.02},
{2.465, 7.885, 16.155, 31.6, 59.34, 86.21, 132.045},
{6.9, 17.92, 32.085, 56.08, 95.95, 132.85, 194.18},
{23.52, 47.625, 74.085, 114.355, 175.72, 229.565, 316.285}};
// now load the data into vector and Matrix classes
cStrikesEU.clear();
fStrikesEU.clear();
cfMaturitiesEU.clear();
for (Real& i : capStrikesEU)
cStrikesEU.push_back(i);
for (Real& i : floorStrikesEU)
fStrikesEU.push_back(i);
for (auto& i : capMaturitiesEU)
cfMaturitiesEU.push_back(i);
ext::shared_ptr<Matrix> tcPriceEU(new Matrix(ncStrikesEU, ncfMaturitiesEU));
ext::shared_ptr<Matrix> tfPriceEU(new Matrix(nfStrikesEU, ncfMaturitiesEU));
for(Size i = 0; i < ncStrikesEU; i++) {
for(Size j = 0; j < ncfMaturitiesEU; j++) {
(*tcPriceEU)[i][j] = capPricesEU[i][j];
}
}
for(Size i = 0; i < nfStrikesEU; i++) {
for(Size j = 0; j < ncfMaturitiesEU; j++) {
(*tfPriceEU)[i][j] = floorPricesEU[i][j];
}
}
cPriceEU = tcPriceEU; // copy to global
fPriceEU = tfPriceEU;
}
void setupPriceSurface() {
// construct:
// calendar, business day convention, and day counter are
// taken from the nominal base give the reference date for
// the inflation options (generally 2 or 3 months before
// nominal reference date)
Natural fixingDays = 0;
Size lag = 3;// must be 3 because we use an interpolated index (EU)
Period yyLag = Period(lag,Months);
DayCounter dc = Actual365Fixed();
TARGET cal;
BusinessDayConvention bdc = ModifiedFollowing;
const ext::shared_ptr<QuantLib::YieldTermStructure>& pn = nominalEUR.currentLink();
Handle<QuantLib::YieldTermStructure> n(pn,false);
ext::shared_ptr<InterpolatedYoYCapFloorTermPriceSurface<Bicubic,Cubic> >
cfEUprices(new InterpolatedYoYCapFloorTermPriceSurface<Bicubic,Cubic>(
fixingDays,
yyLag, yoyIndexEU, CPI::Linear,
n, dc,
cal, bdc,
cStrikesEU, fStrikesEU, cfMaturitiesEU,
(*cPriceEU), (*fPriceEU)));
priceSurfEU = cfEUprices;
}
BOOST_AUTO_TEST_CASE(testYoYPriceSurfaceToVol) {
BOOST_TEST_MESSAGE("Testing conversion from YoY price surface "
"to YoY volatility surface...");
setup();
// first get the price surface set up
setupPriceSurface();
// caplet pricer, recall that setCapletVolatility(Handle<YoYOptionletVolatilitySurface>)
// exists ... we'll use it with the -Curve variant of the surface
// test UNIT DISPLACED pricer
ext::shared_ptr<YoYOptionletVolatilitySurface> pVS;
Handle<YoYOptionletVolatilitySurface> hVS(pVS, false); // pVS does NOT own whatever it points to later, hence the handle does not either
ext::shared_ptr<YoYInflationUnitDisplacedBlackCapFloorEngine>
yoyPricerUD(new YoYInflationUnitDisplacedBlackCapFloorEngine(yoyIndexEU,hVS,nominalEUR)); //hVS
// N.B. the vol gets set in the stripper ... else no point!
// cap stripper
ext::shared_ptr<YoYOptionletStripper> yoyOptionletStripper(
new InterpolatedYoYOptionletStripper<Linear>() );
// now set up all the variables for the stripping
Natural settlementDays = 0;
TARGET cal;
BusinessDayConvention bdc = ModifiedFollowing;
DayCounter dc = Actual365Fixed();
ext::shared_ptr<YoYCapFloorTermPriceSurface> capFloorPrices = priceSurfEU;
Period lag = priceSurfEU->observationLag();
Real slope = -0.5; //when you have bad data, i.e. very low/constant
//prices for short dated extreem strikes
//then you cannot assume constant caplet vol
//(else arbitrage)
// N.B. if this is too extreme then can't
// get a no-arbitrage solution anyway
// the way the slope is used means that the slope is
// proportional to the level so higher slopes at
// the edges when things are more volatile
// Actually is doesn't matter what the interpolation is because we only
// intend to use the K values that correspond to quotes ... for model fitting.
ext::shared_ptr<KInterpolatedYoYOptionletVolatilitySurface<Linear> > yoySurf(new
KInterpolatedYoYOptionletVolatilitySurface<Linear>(settlementDays,
cal, bdc, dc, lag, capFloorPrices, yoyPricerUD, yoyOptionletStripper,
slope) );
// now use it for something ... like stating what the T=const lines look like
const Real volATyear1[] = {
0.0129, 0.0094, 0.0083, 0.0073, 0.0064,
0.0058, 0.0042, 0.0046, 0.0053, 0.0064,
0.0098
};
const Real volATyear3[] = {
0.0080, 0.0058, 0.0051, 0.0045, 0.0040,
0.0035, 0.0026, 0.0028, 0.0033, 0.0040,
0.0061
};
Date d = yoySurf->baseDate() + Period(1,Years);
auto someSlice = yoySurf->Dslice(d);
Size n = someSlice.first.size();
Real eps = 0.0001;
for(Size i = 0; i < n; i++){
QL_REQUIRE( fabs(someSlice.second[i] - volATyear1[i]) < eps,
" could not recover 1yr vol: " << someSlice.second[i]
<< " vs " << volATyear1[i] );
}
d = yoySurf->baseDate() + Period(3,Years);
auto someOtherSlice = yoySurf->Dslice(d);
n = someOtherSlice.first.size();
for(Size i = 0; i < n; i++){
QL_REQUIRE(fabs(someOtherSlice.second[i]-volATyear3[i]) < eps,
"could not recover 3yr vol: "
<< someOtherSlice.second[i]<< " vs " << volATyear3[i] );
}
reset();
}
BOOST_AUTO_TEST_CASE(testYoYPriceSurfaceToATM) {
BOOST_TEST_MESSAGE("Testing conversion from YoY cap-floor surface "
"to YoY inflation term structure...");
setup();
setupPriceSurface();
auto yyATMt = priceSurfEU->atmYoYSwapTimeRates();
auto yyATMd = priceSurfEU->atmYoYSwapDateRates();
// Real dy = (Real)lag / 12.0;
const Real crv[] = {0.024586, 0.0247575, 0.0249396, 0.0252596,
0.0258498, 0.0262883, 0.0267915};
const Real swaps[] = {0.024586, 0.0247575, 0.0249396, 0.0252596,
0.0258498, 0.0262883, 0.0267915};
const Real ayoy[] = {0.0247659, 0.0251437, 0.0255945, 0.0265015,
0.0280457, 0.0285534, 0.0295884};
Real eps = 2e-5;
for(Size i = 0; i < yyATMt.first.size(); i++) {
QL_REQUIRE(fabs( yyATMt.second[i] - crv[i] ) < eps,
"could not recover cached yoy swap curve "
<< yyATMt.second[i]<< " vs " << crv[i]);
}
for(Size i = 0; i < yyATMd.first.size(); i++) {
QL_REQUIRE(fabs( priceSurfEU->atmYoYSwapRate(yyATMd.first[i]) - swaps[i] ) < eps,
"could not recover yoy swap curve "
<< priceSurfEU->atmYoYSwapRate(yyATMd.first[i]) << " vs " << swaps[i]);
}
for(Size i = 0; i < yyATMd.first.size(); i++) {
QL_REQUIRE(fabs( priceSurfEU->atmYoYRate(yyATMd.first[i]) - ayoy[i] ) < eps,
" could not recover cached yoy curve "
<< priceSurfEU->atmYoYRate(yyATMd.first[i]) << " vs " << ayoy[i]
<<" at "<<yyATMd.first[i]);
}
reset();
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|