1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2007, 2008 Klaus Spanderen
Copyright (C) 2007 Neil Firth
Copyright (C) 2016 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/experimental/math/moorepenroseinverse.hpp>
#include <ql/math/matrix.hpp>
#include <ql/math/matrixutilities/basisincompleteordered.hpp>
#include <ql/math/matrixutilities/bicgstab.hpp>
#include <ql/math/matrixutilities/choleskydecomposition.hpp>
#include <ql/math/matrixutilities/gmres.hpp>
#include <ql/math/matrixutilities/householder.hpp>
#include <ql/math/matrixutilities/pseudosqrt.hpp>
#include <ql/math/matrixutilities/qrdecomposition.hpp>
#include <ql/math/matrixutilities/svd.hpp>
#include <ql/math/matrixutilities/symmetricschurdecomposition.hpp>
#include <ql/math/matrixutilities/sparsematrix.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <cmath>
#include <iterator>
#include <utility>
#include <numeric>
using namespace QuantLib;
using namespace boost::unit_test_framework;
using std::fabs;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(MatricesTests)
#ifdef __cpp_concepts
static_assert(std::random_access_iterator<Matrix::column_iterator>);
static_assert(std::random_access_iterator<Matrix::const_column_iterator>);
static_assert(std::random_access_iterator<Matrix::reverse_column_iterator>);
static_assert(std::random_access_iterator<Matrix::const_reverse_column_iterator>);
#endif
Size N;
Matrix M1, M2, M3, M4, M5, M6, M7, I;
Real norm(const Array& v) {
return std::sqrt(DotProduct(v,v));
}
Real norm(const Matrix& m) {
Real sum = 0.0;
for (Size i=0; i<m.rows(); i++)
for (Size j=0; j<m.columns(); j++)
sum += m[i][j]*m[i][j];
return std::sqrt(sum);
}
void setup() {
N = 3;
M1 = M2 = I = Matrix(N,N);
M3 = Matrix(3,4);
M4 = Matrix(4,3);
M5 = Matrix(4, 4, 0.0);
M6 = Matrix(4, 4, 0.0);
M1[0][0] = 1.0; M1[0][1] = 0.9; M1[0][2] = 0.7;
M1[1][0] = 0.9; M1[1][1] = 1.0; M1[1][2] = 0.4;
M1[2][0] = 0.7; M1[2][1] = 0.4; M1[2][2] = 1.0;
M2[0][0] = 1.0; M2[0][1] = 0.9; M2[0][2] = 0.7;
M2[1][0] = 0.9; M2[1][1] = 1.0; M2[1][2] = 0.3;
M2[2][0] = 0.7; M2[2][1] = 0.3; M2[2][2] = 1.0;
I[0][0] = 1.0; I[0][1] = 0.0; I[0][2] = 0.0;
I[1][0] = 0.0; I[1][1] = 1.0; I[1][2] = 0.0;
I[2][0] = 0.0; I[2][1] = 0.0; I[2][2] = 1.0;
M3[0][0] = 1; M3[0][1] = 2; M3[0][2] = 3; M3[0][3] = 4;
M3[1][0] = 2; M3[1][1] = 0; M3[1][2] = 2; M3[1][3] = 1;
M3[2][0] = 0; M3[2][1] = 1; M3[2][2] = 0; M3[2][3] = 0;
M4[0][0] = 1; M4[0][1] = 2; M4[0][2] = 400;
M4[1][0] = 2; M4[1][1] = 0; M4[1][2] = 1;
M4[2][0] = 30; M4[2][1] = 2; M4[2][2] = 0;
M4[3][0] = 2; M4[3][1] = 0; M4[3][2] = 1.05;
// from Higham - nearest correlation matrix
M5[0][0] = 2; M5[0][1] = -1; M5[0][2] = 0.0; M5[0][3] = 0.0;
M5[1][0] = M5[0][1]; M5[1][1] = 2; M5[1][2] = -1; M5[1][3] = 0.0;
M5[2][0] = M5[0][2]; M5[2][1] = M5[1][2]; M5[2][2] = 2; M5[2][3] = -1;
M5[3][0] = M5[0][3]; M5[3][1] = M5[1][3]; M5[3][2] = M5[2][3]; M5[3][3] = 2;
// from Higham - nearest correlation matrix to M5
M6[0][0] = 1; M6[0][1] = -0.8084124981; M6[0][2] = 0.1915875019; M6[0][3] = 0.106775049;
M6[1][0] = M6[0][1]; M6[1][1] = 1; M6[1][2] = -0.6562326948; M6[1][3] = M6[0][2];
M6[2][0] = M6[0][2]; M6[2][1] = M6[1][2]; M6[2][2] = 1; M6[2][3] = M6[0][1];
M6[3][0] = M6[0][3]; M6[3][1] = M6[1][3]; M6[3][2] = M6[2][3]; M6[3][3] = 1;
M7 = M1;
M7[0][1] = 0.3; M7[0][2] = 0.2; M7[2][1] = 1.2;
}
class MatrixMult {
public:
explicit MatrixMult(Matrix m) : m_(std::move(m)) {}
Array operator()(const Array& x) const {
return m_ * x;
}
private:
const Matrix m_;
};
Real norm2(const Array& x) {
return std::sqrt(DotProduct(x,x));
}
BOOST_AUTO_TEST_CASE(testEigenvectors) {
BOOST_TEST_MESSAGE("Testing eigenvalues and eigenvectors calculation...");
setup();
Matrix testMatrices[] = { M1, M2 };
for (auto& M : testMatrices) {
SymmetricSchurDecomposition dec(M);
Array eigenValues = dec.eigenvalues();
Matrix eigenVectors = dec.eigenvectors();
Real minHolder = QL_MAX_REAL;
for (Size i=0; i<N; i++) {
Array v(N);
for (Size j=0; j<N; j++)
v[j] = eigenVectors[j][i];
// check definition
Array a = M*v;
Array b = eigenValues[i]*v;
if (norm(a-b) > 1.0e-15)
BOOST_FAIL("Eigenvector definition not satisfied");
// check decreasing ordering
if (eigenValues[i] >= minHolder) {
BOOST_FAIL("Eigenvalues not ordered: " << eigenValues);
} else
minHolder = eigenValues[i];
}
// check normalization
Matrix m = eigenVectors * transpose(eigenVectors);
if (norm(m-I) > 1.0e-15)
BOOST_FAIL("Eigenvector not normalized");
}
}
BOOST_AUTO_TEST_CASE(testSqrt) {
BOOST_TEST_MESSAGE("Testing matricial square root...");
setup();
Matrix m = pseudoSqrt(M1, SalvagingAlgorithm::None);
Matrix temp = m*transpose(m);
Real error = norm(temp - M1);
Real tolerance = 1.0e-12;
if (error>tolerance) {
BOOST_FAIL("Matrix square root calculation failed\n"
<< "original matrix:\n" << M1
<< "pseudoSqrt:\n" << m
<< "pseudoSqrt*pseudoSqrt:\n" << temp
<< "\nerror: " << error
<< "\ntolerance: " << tolerance);
}
}
BOOST_AUTO_TEST_CASE(testHighamSqrt) {
BOOST_TEST_MESSAGE("Testing Higham matricial square root...");
setup();
Matrix tempSqrt = pseudoSqrt(M5, SalvagingAlgorithm::Higham);
Matrix ansSqrt = pseudoSqrt(M6, SalvagingAlgorithm::None);
Real error = norm(ansSqrt - tempSqrt);
Real tolerance = 1.0e-4;
if (error>tolerance) {
BOOST_FAIL("Higham matrix correction failed\n"
<< "original matrix:\n" << M5
<< "pseudoSqrt:\n" << tempSqrt
<< "should be:\n" << ansSqrt
<< "\nerror: " << error
<< "\ntolerance: " << tolerance);
}
}
BOOST_AUTO_TEST_CASE(testSVD) {
BOOST_TEST_MESSAGE("Testing singular value decomposition...");
setup();
Real tol = 1.0e-12;
Matrix testMatrices[] = { M1, M2, M3, M4 };
for (auto& A : testMatrices) {
// m >= n required (rows >= columns)
SVD svd(A);
// U is m x n
const Matrix& U = svd.U();
// s is n long
Array s = svd.singularValues();
// S is n x n
Matrix S = svd.S();
// V is n x n
const Matrix& V = svd.V();
for (Size i=0; i < S.rows(); i++) {
if (S[i][i] != s[i])
BOOST_FAIL("S not consistent with s");
}
// tests
Matrix U_Utranspose = transpose(U)*U;
if (norm(U_Utranspose-I) > tol)
BOOST_FAIL("U not orthogonal (norm of U^T*U-I = "
<< norm(U_Utranspose-I) << ")");
Matrix V_Vtranspose = transpose(V)*V;
if (norm(V_Vtranspose-I) > tol)
BOOST_FAIL("V not orthogonal (norm of V^T*V-I = "
<< norm(V_Vtranspose-I) << ")");
Matrix A_reconstructed = U * S * transpose(V);
if (norm(A_reconstructed-A) > tol)
BOOST_FAIL("Product does not recover A: (norm of U*S*V^T-A = "
<< norm(A_reconstructed-A) << ")");
}
}
BOOST_AUTO_TEST_CASE(testQRDecomposition) {
BOOST_TEST_MESSAGE("Testing QR decomposition...");
setup();
Real tol = 1.0e-12;
Matrix testMatrices[] = { M1, M2, I,
M3, transpose(M3), M4, transpose(M4), M5 };
for (const auto& A : testMatrices) {
Matrix Q, R;
bool pivot = true;
const std::vector<Size> ipvt = qrDecomposition(A, Q, R, pivot);
Matrix P(A.columns(), A.columns(), 0.0);
// reverse column pivoting
for (Size i=0; i < P.columns(); ++i) {
P[ipvt[i]][i] = 1.0;
}
if (norm(Q*R - A*P) > tol)
BOOST_FAIL("Q*R does not match matrix A*P (norm = "
<< norm(Q*R-A*P) << ")");
pivot = false;
qrDecomposition(A, Q, R, pivot);
if (norm(Q*R - A) > tol)
BOOST_FAIL("Q*R does not match matrix A (norm = "
<< norm(Q*R-A) << ")");
}
}
BOOST_AUTO_TEST_CASE(testQRSolve) {
BOOST_TEST_MESSAGE("Testing QR solve...");
setup();
Real tol = 1.0e-12;
MersenneTwisterUniformRng rng(1234);
Matrix bigM(50, 100, 0.0);
for (Size i=0; i < std::min(bigM.rows(), bigM.columns()); ++i) {
bigM[i][i] = i+1.0;
}
Matrix randM(50, 200);
for (Size i=0; i < randM.rows(); ++i)
for (Size j=0; j < randM.columns(); ++j)
randM[i][j] = rng.next().value;
Matrix testMatrices[] = {M1, M2, M3, transpose(M3),
M4, transpose(M4), M5, I, M7,
bigM, transpose(bigM),
randM, transpose(randM) };
for (const auto& A : testMatrices) {
Array b(A.rows());
for (Size k=0; k < 10; ++k) {
for (Real& iter : b) {
iter = rng.next().value;
}
const Array x = qrSolve(A, b, true);
if (A.columns() >= A.rows()) {
if (norm(A*x - b) > tol)
BOOST_FAIL("A*x does not match vector b (norm = "
<< norm(A*x - b) << ")");
}
else {
// use the SVD to calculate the reference values
const Size n = A.columns();
Array xr(n, 0.0);
SVD svd(A);
const Matrix& V = svd.V();
const Matrix& U = svd.U();
const Array& w = svd.singularValues();
const Real threshold = n*QL_EPSILON;
for (Size i=0; i<n; ++i) {
if (w[i] > threshold) {
const Real u = std::inner_product(U.column_begin(i),
U.column_end(i),
b.begin(), Real(0.0))/w[i];
for (Size j=0; j<n; ++j) {
xr[j] +=u*V[j][i];
}
}
}
if (norm(xr-x) > tol) {
BOOST_FAIL("least square solution does not match (norm = "
<< norm(x - xr) << ")");
}
}
}
}
}
BOOST_AUTO_TEST_CASE(testInverse) {
BOOST_TEST_MESSAGE("Testing LU inverse calculation...");
setup();
Real tol = 1.0e-12;
Matrix testMatrices[] = { M1, M2, I, M5 };
for (const auto& A : testMatrices) {
const Matrix invA = inverse(A);
const Matrix I1 = invA*A;
const Matrix I2 = A*invA;
Matrix identity(A.rows(), A.rows(), 0.0);
for (Size i=0; i < A.rows(); ++i) identity[i][i] = 1.0;
if (norm(I1 - identity) > tol)
BOOST_FAIL("inverse(A)*A does not recover unit matrix (norm = "
<< norm(I1-identity) << ")");
if (norm(I2 - identity) > tol)
BOOST_FAIL("A*inverse(A) does not recover unit matrix (norm = "
<< norm(I1-identity) << ")");
}
}
BOOST_AUTO_TEST_CASE(testDeterminant) {
BOOST_TEST_MESSAGE("Testing LU determinant calculation...");
setup();
Real tol = 1e-10;
Matrix testMatrices[] = {M1, M2, M5, M6, I};
// expected results calculated with octave
Real expected[] = { 0.044, -0.012, 5.0, 5.7621e-11, 1.0};
for (Size j=0; j<std::size(testMatrices); ++j) {
const Real calculated = determinant(testMatrices[j]);
if (std::fabs(expected[j] - calculated) > tol)
BOOST_FAIL("determinant calculation failed "
<< "\n matrix :\n" << testMatrices[j]
<< "\n calculated : " << calculated
<< "\n expected : " << expected[j]);
}
MersenneTwisterUniformRng rng(1234);
for (Size j=0; j<100; ++j) {
Matrix m(3, 3, 0.0);
for (Real& iter : m)
iter = rng.next().value;
if ((j % 3) == 0U) {
// every third matrix is a singular matrix
Size row = Size(3*rng.next().value);
std::fill(m.row_begin(row), m.row_end(row), 0.0);
}
Real a=m[0][0];
Real b=m[0][1];
Real c=m[0][2];
Real d=m[1][0];
Real e=m[1][1];
Real f=m[1][2];
Real g=m[2][0];
Real h=m[2][1];
Real i=m[2][2];
const Real expected = a*e*i+b*f*g+c*d*h-(g*e*c+h*f*a+i*d*b);
const Real calculated = determinant(m);
if (std::fabs(expected-calculated) > tol)
BOOST_FAIL("determinant calculation failed "
<< "\n matrix :\n" << m
<< "\n calculated : " << calculated
<< "\n expected : " << expected);
}
}
BOOST_AUTO_TEST_CASE(testOrthogonalProjection) {
BOOST_TEST_MESSAGE("Testing orthogonal projections...");
Size dimension = 1000;
Size numberVectors = 50;
Real multiplier = 100;
Real tolerance = 1e-6;
unsigned long seed = 1;
Real errorAcceptable = 1E-11;
Matrix test(numberVectors,dimension);
MersenneTwisterUniformRng rng(seed);
for (Size i=0; i < numberVectors; ++i)
for (Size j=0; j < dimension; ++j)
test[i][j] = rng.next().value;
OrthogonalProjections projector(test,
multiplier,
tolerance );
Size numberFailures =0;
Size failuresTwo=0;
for (Size i=0; i < numberVectors; ++i)
{
// check output vector i is orthogonal to all other vectors
if (projector.validVectors()[i])
{
for (Size j=0; j < numberVectors; ++j)
if (projector.validVectors()[j] && i != j)
{
Real dotProduct=0.0;
for (Size k=0; k < dimension; ++k)
dotProduct += test[j][k]*projector.GetVector(i)[k];
if (fabs(dotProduct) > errorAcceptable)
++numberFailures;
}
Real innerProductWithOriginal =0.0;
Real normSq =0.0;
for (Size j=0; j < dimension; ++j)
{
innerProductWithOriginal += projector.GetVector(i)[j]*test[i][j];
normSq += test[i][j]*test[i][j];
}
if (fabs(innerProductWithOriginal-normSq) > errorAcceptable)
++failuresTwo;
}
}
if (numberFailures > 0 || failuresTwo >0)
BOOST_FAIL("OrthogonalProjections test failed with " << numberFailures << " failures of orthogonality and "
<< failuresTwo << " failures of projection size.");
}
BOOST_AUTO_TEST_CASE(testCholeskyDecomposition) {
BOOST_TEST_MESSAGE("Testing Cholesky Decomposition...");
// This test case fails prior to release 1.8
// The eigenvalues of this matrix are
// 0.0438523; 0.0187376; 0.000245617; 0.000127656; 8.35899e-05; 6.14215e-05;
// 1.94241e-05; 1.14417e-06; 9.79481e-18; 1.31141e-18; 5.81155e-19
Real tmp[11][11] = {
{6.4e-05, 5.28e-05, 2.28e-05, 0.00032, 0.00036, 6.4e-05,
6.3968010664e-06, 7.2e-05, 7.19460269899e-06, 1.2e-05,
1.19970004999e-06},
{5.28e-05, 0.000121, 1.045e-05, 0.00044, 0.000165, 2.2e-05,
2.19890036657e-06, 1.65e-05, 1.64876311852e-06, 1.1e-05,
1.09972504583e-06},
{2.28e-05, 1.045e-05, 9.025e-05, 0, 0.0001425, 9.5e-06,
9.49525158294e-07, 2.85e-05, 2.84786356835e-06, 4.75e-06,
4.74881269789e-07},
{0.00032, 0.00044, 0, 0.04, 0.009, 0.0008, 7.996001333e-05, 0.0006,
5.99550224916e-05, 0.0001, 9.99750041661e-06},
{0.00036, 0.000165, 0.0001425, 0.009, 0.0225, 0.0003, 2.99850049987e-05,
0.001125, 0.000112415667172, 0.000225, 2.24943759374e-05},
{6.4e-05, 2.2e-05, 9.5e-06, 0.0008, 0.0003, 0.0001, 9.99500166625e-06,
7.5e-05, 7.49437781145e-06, 2e-05, 1.99950008332e-06},
{6.3968010664e-06, 2.19890036657e-06, 9.49525158294e-07,
7.996001333e-05, 2.99850049987e-05, 9.99500166625e-06,
9.99000583083e-07, 7.49625124969e-06, 7.49063187129e-07,
1.99900033325e-06, 1.99850066645e-07},
{7.2e-05, 1.65e-05, 2.85e-05, 0.0006, 0.001125, 7.5e-05,
7.49625124969e-06, 0.000225, 2.24831334343e-05, 1.5e-05,
1.49962506249e-06},
{7.19460269899e-06, 1.64876311852e-06, 2.84786356835e-06,
5.99550224916e-05, 0.000112415667172, 7.49437781145e-06,
7.49063187129e-07, 2.24831334343e-05, 2.24662795123e-06,
1.49887556229e-06, 1.49850090584e-07},
{1.2e-05, 1.1e-05, 4.75e-06, 0.0001, 0.000225, 2e-05, 1.99900033325e-06,
1.5e-05, 1.49887556229e-06, 2.5e-05, 2.49937510415e-06},
{1.19970004999e-06, 1.09972504583e-06, 4.74881269789e-07,
9.99750041661e-06, 2.24943759374e-05, 1.99950008332e-06,
1.99850066645e-07, 1.49962506249e-06, 1.49850090584e-07,
2.49937510415e-06, 2.49875036451e-07}};
Matrix m(11,11);
for(Size i=0;i<11;++i) {
for(Size j=0;j<11;++j) {
m[i][j] = tmp[i][j];
}
}
Matrix c = CholeskyDecomposition(m,true);
Matrix m2 = c * transpose(c);
Real tol = 1.0E-12;
for(Size i=0;i<11;++i) {
for(Size j=0;j<11;++j) {
if(std::isnan(m2[i][j])) {
BOOST_FAIL("Faield to verify Cholesky decomposition at (i,j)=("
<< i << "," << j << "), replicated value is nan");
}
// this does not detect nan values
if(std::abs(m[i][j]-m2[i][j]) > tol) {
BOOST_FAIL("Failed to verify Cholesky decomposition at (i,j)=("
<< i << "," << j << "), original value is "
<< m[i][j] << ", replicated value is " << m2[i][j]);
}
}
}
}
BOOST_AUTO_TEST_CASE(testMoorePenroseInverse) {
BOOST_TEST_MESSAGE("Testing Moore-Penrose inverse...");
// this is taken from
// http://de.mathworks.com/help/matlab/ref/pinv.html
Real tmp[8][6] = {{64, 2, 3, 61, 60, 6}, {9, 55, 54, 12, 13, 51},
{17, 47, 46, 20, 21, 43}, {40, 26, 27, 37, 36, 30},
{32, 34, 35, 29, 28, 38}, {41, 23, 22, 44, 45, 19},
{49, 15, 14, 52, 53, 11}, {8, 58, 59, 5, 4, 62}};
Matrix A(8, 6);
for (Size i = 0; i < 8; ++i) {
for (Size j = 0; j < 6; ++j) {
A(i, j) = tmp[i][j];
}
}
Matrix P = moorePenroseInverse(A);
Array b(8, 260.0);
Array x = P*b;
Real cached[6] = {1.153846153846152, 1.461538461538463, 1.384615384615384,
1.384615384615385, 1.461538461538462, 1.153846153846152};
constexpr double tol = 500.0 * QL_EPSILON;
for (Size i = 0; i < 6; ++i) {
if (std::abs(x[i] - cached[i]) > tol) {
BOOST_FAIL("Failed to verify minimal norm solution obtained from "
"Moore-Penrose-Inverse against cached results, component "
<< i << " is " << x[i] << ", expected " << cached[i]
<< ", difference " << x[i] - cached[i] << ", tolerance "
<< tol);
}
}
Array y = A*x;
constexpr double tol2 = 2000.0 * QL_EPSILON;
for (Size i = 0; i < 6; ++i) {
if (std::abs(y[i] - 260.0) > tol2) {
BOOST_FAIL(
"Failed to verify minimal norm solution obtained from "
"Moore-Penrose-Inverse when back-substituting, rhs component "
<< i << " is " << y[i] << ", expected 260.0, difference "
<< y[i] - 260.0 << ", tolerance " << tol2);
}
}
}
BOOST_AUTO_TEST_CASE(testIterativeSolvers) {
BOOST_TEST_MESSAGE("Testing iterative solvers...");
setup();
Array b(3);
b[0] = 1.0; b[1] = 0.5; b[2] = 3.0;
constexpr double relTol = 1e4 * QL_EPSILON;
const Array x = BiCGstab(MatrixMult(M1), 3, relTol).solve(b).x;
if (norm2(M1*x-b)/norm2(b) > relTol) {
BOOST_FAIL("Failed to calculate inverse using BiCGstab"
<< "\n rel error : " << norm2(M1*x-b)/norm2(b)
<< "\n rel tolerance : " << relTol);
}
const GMRESResult u = GMRES(MatrixMult(M1), 3, relTol).solve(b, b);
if (norm2(M1*u.x-b)/norm2(b) > relTol) {
BOOST_FAIL("Failed to calculate inverse using gmres"
<< "\n rel error : " << norm2(M1*u.x-b)/norm2(b)
<< "\n rel tolerance : " << relTol);
}
const Array errors = Array(u.errors.begin(), u.errors.end());
for (Real error : errors) {
const Array x = GMRES(MatrixMult(M1), 10, 1.01 * error).solve(b, b).x;
const Real calculated = norm2(M1*x-b)/norm2(b);
const Real expected = error;
if (std::fabs(calculated - expected) > relTol) {
BOOST_FAIL("Failed to calculate solution error"
<< "\n calculated error: " << calculated
<< "\n expected error : " << expected);
}
}
const Array v = GMRES(MatrixMult(M1), 1, relTol,
MatrixMult(inverse(M1))).solve(b, b).x;
if (norm2(M1*v-b)/norm2(b) > relTol) {
BOOST_FAIL("Failed to calculate inverse using gmres "
"with exact preconditioning"
<< "\n rel error : " << norm2(M1*v-b)/norm2(b)
<< "\n rel tolerance : " << relTol);
}
const Array w = GMRES(MatrixMult(M1), 3, relTol,
MatrixMult(M1)).solve(b, b).x;
if (norm2(M1*w-b)/norm2(b) > relTol) {
BOOST_FAIL("Failed to calculate inverse using gmres "
"with nonsense preconditioning"
<< "\n rel error : " << norm2(M1*w-b)/norm2(b)
<< "\n rel tolerance : " << relTol);
}
}
BOOST_AUTO_TEST_CASE(testInitializers) {
BOOST_TEST_MESSAGE("Testing matrix initializers...");
Matrix m1 = {};
BOOST_REQUIRE(m1.rows() == 0);
BOOST_REQUIRE(m1.columns() == 0);
Matrix m2 = {
{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0}
};
BOOST_REQUIRE(m2.rows() == 2);
BOOST_REQUIRE(m2.columns() == 3);
BOOST_CHECK_EQUAL(m2(0, 0), 1.0);
BOOST_CHECK_EQUAL(m2(0, 1), 2.0);
BOOST_CHECK_EQUAL(m2(0, 2), 3.0);
BOOST_CHECK_EQUAL(m2(1, 0), 4.0);
BOOST_CHECK_EQUAL(m2(1, 1), 5.0);
BOOST_CHECK_EQUAL(m2(1, 2), 6.0);
}
typedef std::pair< std::pair< std::vector<Size>, std::vector<Size> >,
std::vector<Real> > coordinate_tuple;
coordinate_tuple sparseMatrixToCoordinateTuple(const SparseMatrix& m) {
std::vector<Size> row_idx, col_idx;
std::vector<Real> data;
for (auto iter1 = m.begin1(); iter1 != m.end1(); ++iter1)
for (auto iter2 = iter1.begin(); iter2 != iter1.end(); ++iter2) {
row_idx.push_back(iter1.index1());
col_idx.push_back(iter2.index2());
data.push_back(*iter2);
}
return std::make_pair(std::make_pair(row_idx, col_idx), data);
}
BOOST_AUTO_TEST_CASE(testSparseMatrixMemory) {
BOOST_TEST_MESSAGE("Testing sparse matrix memory layout...");
SparseMatrix m(8, 4);
BOOST_CHECK_EQUAL(m.filled1(), 1);
BOOST_CHECK_EQUAL(m.size1(), 8);
BOOST_CHECK_EQUAL(m.size2(), 4);
BOOST_CHECK_EQUAL(std::distance(m.begin1(), m.end1()), m.size1());
auto coords = sparseMatrixToCoordinateTuple(m);
BOOST_CHECK_EQUAL(coords.first.first.size(), 0);
m(3, 1) = 42;
coords = sparseMatrixToCoordinateTuple(m);
BOOST_CHECK_EQUAL(std::distance(m.begin1(), m.end1()), m.size1());
BOOST_CHECK_EQUAL(coords.first.first.size(), 1);
BOOST_CHECK_EQUAL(coords.first.first[0], 3);
BOOST_CHECK_EQUAL(coords.first.second[0], 1);
BOOST_CHECK_EQUAL(coords.second[0], 42);
m(1, 2) = 6;
coords = sparseMatrixToCoordinateTuple(m);
BOOST_CHECK_EQUAL(coords.first.first.size(), 2);
BOOST_CHECK_EQUAL(coords.first.first[0], 1);
BOOST_CHECK_EQUAL(coords.first.second[0], 2);
BOOST_CHECK_EQUAL(coords.second[0], 6);
Array x{1, 2, 3, 4};
Array y = prod(m, x);
BOOST_CHECK_EQUAL(y, Array({0, 18, 0, 84}));
m(3, 2) = 43;
coords = sparseMatrixToCoordinateTuple(m);
BOOST_CHECK_EQUAL(coords.first.first.size(), 3);
BOOST_CHECK_EQUAL(coords.first.first[2], 3);
BOOST_CHECK_EQUAL(coords.first.second[2], 2);
BOOST_CHECK_EQUAL(coords.second[2], 43);
m(7, 3) = 44;
coords = sparseMatrixToCoordinateTuple(m);
BOOST_CHECK_EQUAL(coords.first.first.size(), 4);
BOOST_CHECK_EQUAL(coords.first.first[3], 7);
BOOST_CHECK_EQUAL(coords.first.second[3], 3);
BOOST_CHECK_EQUAL(coords.second[3], 44);
Size entries(0);
for (auto iter1 = m.begin1(); iter1 != m.end1(); ++iter1)
entries+=std::distance(iter1.begin(), iter1.end());
BOOST_CHECK_EQUAL(entries, 4);
}
#define QL_CHECK_CLOSE_MATRIX_TOL(actual, expected, tol) \
BOOST_REQUIRE(actual.rows() == expected.rows() && \
actual.columns() == expected.columns()); \
for (auto i = 0u; i < actual.rows(); i++) { \
for (auto j = 0u; j < actual.columns(); j++) { \
QL_CHECK_CLOSE(actual(i, j), expected(i, j), tol); \
} \
} \
#define QL_CHECK_CLOSE_MATRIX(actual, expected) \
QL_CHECK_CLOSE_MATRIX_TOL(actual, expected, 100 * QL_EPSILON) \
BOOST_AUTO_TEST_CASE(testOperators) {
BOOST_TEST_MESSAGE("Testing matrix operators...");
auto get_matrix = []() {
return Matrix(2, 3, 4.0);
};
const auto m = get_matrix();
const auto negative = Matrix(2, 3, -4.0);
const auto lvalue_negative = -m;
const auto rvalue_negative = -get_matrix();
QL_CHECK_CLOSE_MATRIX(lvalue_negative, negative);
QL_CHECK_CLOSE_MATRIX(rvalue_negative, negative);
const auto matrix_sum = Matrix(2, 3, 8.0);
const auto lvalue_lvalue_sum = m + m;
const auto lvalue_rvalue_sum = m + get_matrix();
const auto rvalue_lvalue_sum = get_matrix() + m;
const auto rvalue_rvalue_sum = get_matrix() + get_matrix();
QL_CHECK_CLOSE_MATRIX(lvalue_lvalue_sum, matrix_sum);
QL_CHECK_CLOSE_MATRIX(lvalue_rvalue_sum, matrix_sum);
QL_CHECK_CLOSE_MATRIX(rvalue_lvalue_sum, matrix_sum);
QL_CHECK_CLOSE_MATRIX(rvalue_rvalue_sum, matrix_sum);
const auto matrix_difference = Matrix(2, 3, 0.0);
const auto lvalue_lvalue_difference = m - m; // NOLINT(misc-redundant-expression)
const auto lvalue_rvalue_difference = m - get_matrix();
const auto rvalue_lvalue_difference = get_matrix() - m;
const auto rvalue_rvalue_difference = get_matrix() - get_matrix();
QL_CHECK_CLOSE_MATRIX(lvalue_lvalue_difference, matrix_difference);
QL_CHECK_CLOSE_MATRIX(lvalue_rvalue_difference, matrix_difference);
QL_CHECK_CLOSE_MATRIX(rvalue_lvalue_difference, matrix_difference);
QL_CHECK_CLOSE_MATRIX(rvalue_rvalue_difference, matrix_difference);
const auto scalar_product = Matrix(2, 3, 6.0);
const auto lvalue_real_product = m * 1.5;
const auto rvalue_real_product = get_matrix() * 1.5;
const auto real_lvalue_product = 1.5 * m;
const auto real_rvalue_product = 1.5 * get_matrix();
QL_CHECK_CLOSE_MATRIX(lvalue_real_product, scalar_product);
QL_CHECK_CLOSE_MATRIX(rvalue_real_product, scalar_product);
QL_CHECK_CLOSE_MATRIX(real_lvalue_product, scalar_product);
QL_CHECK_CLOSE_MATRIX(real_rvalue_product, scalar_product);
const auto scalar_quotient = Matrix(2, 3, 2.0);
const auto lvalue_real_quotient = m / 2.0;
const auto rvalue_real_quotient = get_matrix() / 2.0;
QL_CHECK_CLOSE_MATRIX(lvalue_real_quotient, scalar_quotient);
QL_CHECK_CLOSE_MATRIX(rvalue_real_quotient, scalar_quotient);
}
namespace MatrixTests {
Matrix createTestCorrelationMatrix(Size n) {
Matrix rho(n, n);
for (Size i=0; i < n; ++i)
for (Size j=i; j < n; ++j)
rho[i][j] = rho[j][i] =
std::exp(-0.1*std::abs(Real(i)-Real(j)) - ((i!=j) ? 0.02*(i+j): 0.0));
return rho;
}
}
BOOST_AUTO_TEST_CASE(testPrincipalMatrixSqrt) {
BOOST_TEST_MESSAGE("Testing principal matrix pseudo sqrt...");
std::vector<Size> dims = {1, 4, 10, 40};
for (Size n: dims) {
const Matrix rho = MatrixTests::createTestCorrelationMatrix(n);
const Matrix sqrtRho = pseudoSqrt(rho, SalvagingAlgorithm::Principal);
// matrix is symmetric
QL_CHECK_CLOSE_MATRIX_TOL(sqrtRho, transpose(sqrtRho), 1e3*QL_EPSILON);
// matrix is square root of original matrix
QL_CHECK_CLOSE_MATRIX_TOL((sqrtRho*sqrtRho), rho, 1e5*QL_EPSILON);
}
}
BOOST_AUTO_TEST_CASE(testCholeskySolverFor) {
BOOST_TEST_MESSAGE("Testing CholeskySolverFor...");
MersenneTwisterUniformRng rng(1234);
std::vector<Size> dims = {1, 4, 10, 25, 50};
for (Size n: dims) {
Array b(n);
for (Size i=0; i < n; ++i)
b[i] = rng.nextReal();
const Matrix rho = MatrixTests::createTestCorrelationMatrix(n);
const Array x = CholeskySolveFor(CholeskyDecomposition(rho), b);
const Array diff = Abs(rho*x - b);
QL_CHECK_SMALL(std::sqrt(DotProduct(diff, diff)), 20*std::sqrt(n)*QL_EPSILON);
}
}
BOOST_AUTO_TEST_CASE(testCholeskySolverForIncomplete) {
BOOST_TEST_MESSAGE("Testing CholeskySolverFor with incomplete matrix...");
const Size n = 4;
Matrix rho(n, n, 0.0);
rho[0][0] = rho[1][1] = Real(1);
rho[0][1] = rho[1][0] = 0.9;
const Matrix L = CholeskyDecomposition(rho, true);
QL_CHECK_CLOSE_MATRIX((L*transpose(L)), rho);
}
namespace {
void QL_CHECK_CLOSE_ARRAY_TOL(
const Array& actual, const Array& expected, Real tol) {
BOOST_REQUIRE(actual.size() == expected.size());
for (auto i = 0U; i < actual.size(); i++) {
QL_CHECK_SMALL(actual[i] - expected[i], tol);
}
}
}
BOOST_AUTO_TEST_CASE(testHouseholderTransformation) {
BOOST_TEST_MESSAGE("Testing Householder Transformation...");
MersenneTwisterUniformRng rng(1234);
const auto I = [](Size i) -> Matrix {
Matrix id(i, i, 0.0);
for (Size j=0; j < i; ++j)
id[j][j] = 1.0;
return id;
};
for (Size i=1; i < 10; ++i) {
Array v(i), x(i);
for (Size j=0; j < i; ++j) {
v[j] = rng.nextReal()-0.5;
x[j] = rng.nextReal()-0.5;
}
const Array expected = (I(i)- 2.0*outerProduct(v, v))*x;
const Array calculated = HouseholderTransformation(v)(x);
QL_CHECK_CLOSE_ARRAY_TOL(calculated, expected, 1e4*QL_EPSILON);
}
}
BOOST_AUTO_TEST_CASE(testHouseholderReflection) {
BOOST_TEST_MESSAGE("Testing Householder Reflection...");
constexpr double tol = 1e4*QL_EPSILON;
const auto e = [](Size n, Size m=0) -> Array {
Array e(n, 0.0);
e[m] = 1.0;
return e;
};
for (Size i=0; i < 5; ++i) {
QL_CHECK_CLOSE_ARRAY_TOL(
HouseholderReflection(e(5))(e(5, i)), e(5), tol);
QL_CHECK_CLOSE_ARRAY_TOL(
HouseholderReflection(e(5))(M_PI*e(5, i)), M_PI*e(5), tol);
QL_CHECK_CLOSE_ARRAY_TOL(
HouseholderReflection(e(5))(
e(5, i) + e(5)),
((i==0)? 2.0 : M_SQRT2)*e(5), tol);
}
// limits
for (Real x=10; x > 1e-50; x*=0.1) {
QL_CHECK_CLOSE_ARRAY_TOL(
HouseholderReflection(e(3))(
Array({10.0, x, 0})),
std::sqrt(10.0*10.0+x*x)*e(3), tol
);
QL_CHECK_CLOSE_ARRAY_TOL(
HouseholderReflection(e(3))(
Array({10.0, x, 1e-3})),
std::sqrt(10.0*10.0+x*x+1e-3*1e-3)*e(3), tol
);
}
MersenneTwisterUniformRng rng(1234);
for (Size i=0; i < 100; ++i) {
const Array v = Array({rng.nextReal(), rng.nextReal(), rng.nextReal()}) - 0.5;
const Matrix u = HouseholderTransformation(v / Norm2(v)).getMatrix();
const Array eu = u*e(3, i%3);
const Array a = Array({rng.nextReal(), rng.nextReal(), rng.nextReal()}) - 0.5;
const Matrix H = HouseholderTransformation(
HouseholderReflection(eu).reflectionVector(a)).getMatrix();
QL_CHECK_CLOSE_ARRAY_TOL(u*H*a, Norm2(a)*e(3, i%3), tol);
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|