1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Klaus Spanderen
Copyright (C) 2007 StatPro Italia srl
Copyright (C) 2015 Thema Consulting SA
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/instruments/vanillaoption.hpp>
#include <ql/methods/montecarlo/lsmbasissystem.hpp>
#include <ql/pricingengines/mclongstaffschwartzengine.hpp>
#include <ql/pricingengines/vanilla/fdblackscholesvanillaengine.hpp>
#include <ql/pricingengines/vanilla/mcamericanengine.hpp>
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/time/calendars/nullcalendar.hpp>
#include <utility>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(MCLongstaffSchwartzEngineTests)
class AmericanMaxPathPricer : public EarlyExercisePathPricer<MultiPath> {
public:
explicit AmericanMaxPathPricer(ext::shared_ptr<Payoff> payoff)
: payoff_(std::move(payoff)) {}
StateType state(const MultiPath& path, Size t) const override {
Array tmp(path.assetNumber());
for (Size i=0; i<path.assetNumber(); ++i) {
tmp[i]=path[i][t];
}
return tmp;
}
Real operator()(const MultiPath& path, Size t) const override {
const Array tmp = state(path, t);
return (*payoff_)(*std::max_element(tmp.begin(), tmp.end()));
}
std::vector<std::function<Real(StateType)> > basisSystem() const override {
return LsmBasisSystem::multiPathBasisSystem(2, 2,
LsmBasisSystem::Monomial);
}
protected:
const ext::shared_ptr<Payoff> payoff_;
};
template <class RNG>
class MCAmericanMaxEngine
: public MCLongstaffSchwartzEngine<VanillaOption::engine,
MultiVariate,RNG>{
public:
MCAmericanMaxEngine(const ext::shared_ptr<StochasticProcessArray>& processes,
Size timeSteps,
Size timeStepsPerYear,
bool brownianbridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples = Null<Size>())
: MCLongstaffSchwartzEngine<VanillaOption::engine,
MultiVariate,RNG>(processes,
timeSteps,
timeStepsPerYear,
brownianbridge,
antitheticVariate,
controlVariate,
requiredSamples,
requiredTolerance,
maxSamples,
seed, nCalibrationSamples)
{ }
protected:
ext::shared_ptr<LongstaffSchwartzPathPricer<MultiPath> > lsmPathPricer() const override {
ext::shared_ptr<StochasticProcessArray> processArray =
ext::dynamic_pointer_cast<StochasticProcessArray>(this->process_);
QL_REQUIRE(processArray && processArray->size() > 0,
"Stochastic process array required");
ext::shared_ptr<GeneralizedBlackScholesProcess> process =
ext::dynamic_pointer_cast<GeneralizedBlackScholesProcess>(
processArray->process(0));
QL_REQUIRE(process, "generalized Black-Scholes proces required");
ext::shared_ptr<AmericanMaxPathPricer> earlyExercisePathPricer(
new AmericanMaxPathPricer(this->arguments_.payoff));
return ext::make_shared<LongstaffSchwartzPathPricer<MultiPath> > (
this->timeGrid(),
earlyExercisePathPricer,
process->riskFreeRate().currentLink());
}
};
BOOST_AUTO_TEST_CASE(testAmericanOption, *precondition(if_speed(Fast))) {
BOOST_TEST_MESSAGE("Testing Monte-Carlo pricing of American options...");
// most of the example taken from the EquityOption.cpp
const Option::Type type(Option::Put);
const Real underlying = 36;
const Spread dividendYield = 0.00;
const Rate riskFreeRate = 0.06;
const Volatility volatility = 0.20;
const Date todaysDate(15, May, 1998);
const Date settlementDate(17, May, 1998);
Settings::instance().evaluationDate() = todaysDate;
const Date maturity(17, May, 1999);
const DayCounter dayCounter = Actual365Fixed();
ext::shared_ptr<Exercise> americanExercise(
new AmericanExercise(settlementDate, maturity));
// bootstrap the yield/dividend/vol curves
Handle<YieldTermStructure> flatTermStructure(
ext::shared_ptr<YieldTermStructure>(
new FlatForward(settlementDate, riskFreeRate, dayCounter)));
Handle<YieldTermStructure> flatDividendTS(
ext::shared_ptr<YieldTermStructure>(
new FlatForward(settlementDate, dividendYield, dayCounter)));
// expected results for exercise probability, evaluated with third-party
// product (using Cox-Rubinstein binomial tree)
Matrix expectedExProb(2, 3);
expectedExProb[0][0] = 0.48013; // (price: 2.105)
expectedExProb[0][1] = 0.51678; // (price: 3.451)
expectedExProb[0][2] = 0.54598; // (price: 4.807)
expectedExProb[1][0] = 0.75549; // (price: 4.505)
expectedExProb[1][1] = 0.67569; // (price: 5.764)
expectedExProb[1][2] = 0.65562; // (price: 7.138)
LsmBasisSystem::PolynomialType polynomialTypes[]
= { LsmBasisSystem::Monomial, LsmBasisSystem::Laguerre,
LsmBasisSystem::Hermite, LsmBasisSystem::Hyperbolic,
LsmBasisSystem::Chebyshev2nd };
for (Integer i=0; i<2; ++i) {
for (Integer j=0; j<3; ++j) {
Handle<BlackVolTermStructure> flatVolTS(
ext::shared_ptr<BlackVolTermStructure>(
new BlackConstantVol(settlementDate, NullCalendar(),
volatility+0.1*j, dayCounter)));
ext::shared_ptr<StrikedTypePayoff> payoff(
new PlainVanillaPayoff(type, underlying+4*i));
Handle<Quote> underlyingH(
ext::shared_ptr<Quote>(new SimpleQuote(underlying)));
ext::shared_ptr<GeneralizedBlackScholesProcess>
stochasticProcess(new GeneralizedBlackScholesProcess(
underlyingH, flatDividendTS,
flatTermStructure, flatVolTS));
VanillaOption americanOption(payoff, americanExercise);
ext::shared_ptr<PricingEngine> mcengine =
MakeMCAmericanEngine<PseudoRandom>(stochasticProcess)
.withSteps(75)
.withAntitheticVariate()
.withAbsoluteTolerance(0.02)
.withSeed(42)
.withPolynomialOrder(3)
.withBasisSystem(polynomialTypes[0*(i*3+j)%std::size(polynomialTypes)]);
americanOption.setPricingEngine(mcengine);
const Real calculated = americanOption.NPV();
const Real errorEstimate = americanOption.errorEstimate();
const Real exerciseProbability =
americanOption.result<QuantLib::Real>("exerciseProbability");
americanOption.setPricingEngine(ext::shared_ptr<PricingEngine>(
new FdBlackScholesVanillaEngine(stochasticProcess, 401, 200)));
const Real expected = americanOption.NPV();
// Check price
if (std::fabs(calculated - expected) > 2.34*errorEstimate) {
BOOST_ERROR("Failed to reproduce american option prices"
<< "\n expected: " << expected
<< "\n calculated: " << calculated
<< " +/- " << errorEstimate);
}
// Check exercise probability (tolerance 1.5%)
if (std::fabs(exerciseProbability - expectedExProb[i][j]) > 0.015) {
BOOST_ERROR("Failed to reproduce american option "
<< "exercise probability"
<< "\n expected: " << expectedExProb[i][j]
<< "\n calculated: " << exerciseProbability);
}
}
}
}
BOOST_AUTO_TEST_CASE(testAmericanMaxOption) {
// reference values taken from
// "Monte Carlo Methods in Financial Engineering",
// by Paul Glasserman, 2004 Springer Verlag, p. 462
BOOST_TEST_MESSAGE("Testing Monte-Carlo pricing of American max options...");
// most of the example taken from the EquityOption.cpp
const Option::Type type(Option::Call);
const Real strike = 100;
const Spread dividendYield = 0.10;
const Rate riskFreeRate = 0.05;
const Volatility volatility = 0.20;
const Date todaysDate(15, May, 1998);
const Date settlementDate(17, May, 1998);
Settings::instance().evaluationDate() = todaysDate;
const Date maturity(16, May, 2001);
const DayCounter dayCounter = Actual365Fixed();
ext::shared_ptr<Exercise> americanExercise(
new AmericanExercise(settlementDate, maturity));
// bootstrap the yield/dividend/vol curves
Handle<YieldTermStructure> flatTermStructure(
ext::shared_ptr<YieldTermStructure>(
new FlatForward(settlementDate, riskFreeRate, dayCounter)));
Handle<YieldTermStructure> flatDividendTS(
ext::shared_ptr<YieldTermStructure>(
new FlatForward(settlementDate, dividendYield, dayCounter)));
Handle<BlackVolTermStructure> flatVolTS(
ext::shared_ptr<BlackVolTermStructure>(new
BlackConstantVol(settlementDate, NullCalendar(),
volatility, dayCounter)));
ext::shared_ptr<StrikedTypePayoff> payoff(
new PlainVanillaPayoff(type, strike));
RelinkableHandle<Quote> underlyingH;
ext::shared_ptr<GeneralizedBlackScholesProcess> stochasticProcess(new
GeneralizedBlackScholesProcess(
underlyingH, flatDividendTS, flatTermStructure, flatVolTS));
const Size numberAssets = 2;
Matrix corr(numberAssets, numberAssets, 0.0);
std::vector<ext::shared_ptr<StochasticProcess1D> > v;
for (Size i=0; i<numberAssets; ++i) {
v.push_back(stochasticProcess);
corr[i][i] = 1.0;
}
ext::shared_ptr<StochasticProcessArray> process(
new StochasticProcessArray(v, corr));
VanillaOption americanMaxOption(payoff, americanExercise);
ext::shared_ptr<PricingEngine> mcengine(
new MCAmericanMaxEngine<PseudoRandom>(process, 25, Null<Size>(), false,
true, false, 4096,
Null<Real>(), Null<Size>(),
42, 1024));
americanMaxOption.setPricingEngine(mcengine);
const Real expected[] = {8.08, 13.90, 21.34};
for (Size i = 0; i < 3; ++i) {
const Real underlying = 90.0 + i*10.0;
underlyingH.linkTo(
ext::shared_ptr<Quote>(new SimpleQuote(underlying)));
const Real calculated = americanMaxOption.NPV();
const Real errorEstimate = americanMaxOption.errorEstimate();
if (std::fabs(calculated - expected[i]) > 2.34*errorEstimate) {
BOOST_ERROR("Failed to reproduce american option prices"
<< "\n expected: " << expected[i]
<< "\n calculated: " << calculated
<< " +/- " << errorEstimate);
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|