1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2016 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/experimental/finitedifferences/fdornsteinuhlenbeckvanillaengine.hpp>
#include <ql/experimental/models/normalclvmodel.hpp>
#include <ql/experimental/volatility/sabrvoltermstructure.hpp>
#include <ql/instruments/doublebarrieroption.hpp>
#include <ql/instruments/forwardvanillaoption.hpp>
#include <ql/instruments/impliedvolatility.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/math/randomnumbers/sobolbrownianbridgersg.hpp>
#include <ql/math/statistics/statistics.hpp>
#include <ql/methods/finitedifferences/utilities/bsmrndcalculator.hpp>
#include <ql/methods/finitedifferences/utilities/hestonrndcalculator.hpp>
#include <ql/methods/montecarlo/pathgenerator.hpp>
#include <ql/pricingengines/barrier/analyticdoublebarrierbinaryengine.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/forward/forwardengine.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/ornsteinuhlenbeckprocess.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/volatility/equityfx/hestonblackvolsurface.hpp>
#include <ql/time/calendars/nullcalendar.hpp>
#include <ql/time/daycounters/actual360.hpp>
#include <ql/time/daycounters/actual365fixed.hpp>
#include <ql/time/daycounters/actualactual.hpp>
#include <functional>
#include <utility>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(NormalCLVModelTests)
BOOST_AUTO_TEST_CASE(testBSCumlativeDistributionFunction) {
BOOST_TEST_MESSAGE("Testing Black-Scholes cumulative distribution function"
" with constant volatility...");
const DayCounter dc = Actual365Fixed();
const Date today = Date(22, June, 2016);
const Date maturity = today + Period(6, Months);
const Real s0 = 100;
const Real rRate = 0.1;
const Real qRate = 0.05;
const Volatility vol = 0.25;
const Handle<Quote> spot(ext::make_shared<SimpleQuote>(s0));
const Handle<YieldTermStructure> qTS(flatRate(today, qRate, dc));
const Handle<YieldTermStructure> rTS(flatRate(today, rRate, dc));
const Handle<BlackVolTermStructure> volTS(flatVol(today, vol, dc));
const ext::shared_ptr<GeneralizedBlackScholesProcess> bsProcess(
ext::make_shared<GeneralizedBlackScholesProcess>(
spot, qTS, rTS, volTS));
const ext::shared_ptr<OrnsteinUhlenbeckProcess> ouProcess;
const NormalCLVModel m(
bsProcess, ouProcess, std::vector<Date>(), 5);
const BSMRNDCalculator rndCalculator(bsProcess);
constexpr double tol = 1e5 * QL_EPSILON;
const Time t = dc.yearFraction(today, maturity);
for (Real x=10; x < 400; x+=10) {
const Real calculated = m.cdf(maturity, x);
const Real expected = rndCalculator.cdf(std::log(x), t);
if (std::fabs(calculated - expected) > tol) {
BOOST_FAIL("Failed to reproduce CDF for "
<< "\n strike: " << x
<< "\n calculated: " << calculated
<< "\n expected: " << expected);
}
}
}
BOOST_AUTO_TEST_CASE(testHestonCumlativeDistributionFunction) {
BOOST_TEST_MESSAGE("Testing Heston cumulative distribution function...");
const DayCounter dc = Actual365Fixed();
const Date today = Date(22, June, 2016);
const Date maturity = today + Period(1, Years);
const Real s0 = 100;
const Real v0 = 0.01;
const Real rRate = 0.1;
const Real qRate = 0.05;
const Real kappa = 2.0;
const Real theta = 0.09;
const Real sigma = 0.4;
const Real rho = -0.75;
const Handle<Quote> spot(ext::make_shared<SimpleQuote>(s0));
const Handle<YieldTermStructure> qTS(flatRate(today, qRate, dc));
const Handle<YieldTermStructure> rTS(flatRate(today, rRate, dc));
const ext::shared_ptr<HestonProcess> process(
ext::make_shared<HestonProcess>(
rTS, qTS, spot, v0, kappa, theta, sigma, rho));
const Handle<BlackVolTermStructure> hestonVolTS(
ext::make_shared<HestonBlackVolSurface>(
Handle<HestonModel>(ext::make_shared<HestonModel>(process))));
const NormalCLVModel m(
ext::make_shared<GeneralizedBlackScholesProcess>(
spot, qTS, rTS, hestonVolTS),
ext::shared_ptr<OrnsteinUhlenbeckProcess>(),
std::vector<Date>(), 5);
const HestonRNDCalculator rndCalculator(process);
const Real tol = 1e-6;
const Time t = dc.yearFraction(today, maturity);
for (Real x=10; x < 400; x+=25) {
const Real calculated = m.cdf(maturity, x);
const Real expected = rndCalculator.cdf(std::log(x), t);
if (std::fabs(calculated - expected) > tol) {
BOOST_FAIL("Failed to reproduce CDF for "
<< "\n strike: " << x
<< "\n calculated: " << calculated
<< "\n expected: " << expected);
}
}
}
BOOST_AUTO_TEST_CASE(testIllustrative1DExample) {
BOOST_TEST_MESSAGE(
"Testing illustrative 1D example of normal CLV model...");
// example taken from:
// A. Grzelak, 2015, The CLV Framework -
// A Fresh Look at Efficient Pricing with Smile
// http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2747541
const DayCounter dc = Actual360();
const Date today = Date(22, June, 2016);
//SABR
const Real beta = 0.5;
const Real alpha= 0.2;
const Real rho = -0.9;
const Real gamma= 0.2;
// Ornstein-Uhlenbeck
const Real speed = 1.3;
const Real level = 0.1;
const Real vol = 0.25;
const Real x0 = 1.0;
const Real s0 = 1.0;
const Real rRate = 0.03;
const Real qRate = 0.0;
const Handle<Quote> spot(ext::make_shared<SimpleQuote>(s0));
const Handle<YieldTermStructure> qTS(flatRate(today, qRate, dc));
const Handle<YieldTermStructure> rTS(flatRate(today, rRate, dc));
const Handle<BlackVolTermStructure> sabrVol(
ext::make_shared<SABRVolTermStructure>(
alpha, beta, gamma, rho, s0, rRate, today, dc));
const ext::shared_ptr<GeneralizedBlackScholesProcess> bsProcess(
ext::make_shared<GeneralizedBlackScholesProcess>(
spot, qTS, rTS, sabrVol));
const ext::shared_ptr<OrnsteinUhlenbeckProcess> ouProcess(
ext::make_shared<OrnsteinUhlenbeckProcess>(
speed, vol, x0, level));
std::vector<Date> maturityDates = {
today + Period(18, Days),
today + Period(90, Days),
today + Period(180, Days),
today + Period(360, Days),
today + Period(720, Days)
};
const NormalCLVModel m(bsProcess, ouProcess, maturityDates, 4);
const std::function<Real(Real, Real)> g = m.g();
// test collocation points in x_ij
std::vector<Date> maturities = { maturityDates[0], maturityDates[2], maturityDates[4] };
std::vector<std::vector<Real> > x = {
{ 1.070, 0.984, 0.903, 0.817 },
{ 0.879, 0.668, 0.472, 0.261 },
{ 0.528, 0.282, 0.052,-0.194 }
};
std::vector<std::vector<Real> > s = {
{1.104, 1.035, 0.969, 0.895},
{1.328, 1.122, 0.911, 0.668},
{1.657, 1.283, 0.854, 0.339}
};
std::vector<Real> c = { 2.3344, 0.7420, -0.7420, -2.3344 };
const Real tol = 0.001;
for (Size i=0; i < maturities.size(); ++i) {
const Time t = dc.yearFraction(today, maturities[i]);
for (Size j=0; j < x.front().size(); ++j) {
const Real calculatedX = m.collocationPointsX(maturities[i])[j];
const Real expectedX = x[i][j];
if (std::fabs(calculatedX - expectedX) > tol) {
BOOST_FAIL("Failed to reproduce collocation x points for "
<< "\n time: " << maturities[i]
<< "\n j " << j
<< "\n calculated: " << calculatedX
<< "\n expected: " << expectedX);
}
const Real calculatedS = m.collocationPointsY(maturities[i])[j];
const Real expectedS = s[i][j];
if (std::fabs(calculatedS - expectedS) > tol) {
BOOST_FAIL("Failed to reproduce collocation s points for "
<< "\n time: " << maturities[i]
<< "\n j " << j
<< "\n calculated: " << calculatedS
<< "\n expected: " << expectedS);
}
const Real expectation
= ouProcess->expectation(0.0, ouProcess->x0(), t);
const Real stdDeviation
= ouProcess->stdDeviation(0.0, ouProcess->x0(), t);
const Real calculatedG = g(t, expectation + stdDeviation*c[j]);
if (std::fabs(calculatedG - expectedS) > tol) {
BOOST_FAIL("Failed to reproduce g values "
"at collocation points for "
<< "\n time: " << maturities[i]
<< "\n j " << j
<< "\n calculated: " << calculatedG
<< "\n expected: " << expectedS);
}
}
}
}
class CLVModelPayoff : public PlainVanillaPayoff {
public:
CLVModelPayoff(Option::Type type, Real strike, std::function<Real(Real)> g)
: PlainVanillaPayoff(type, strike), g_(std::move(g)) {}
Real operator()(Real x) const override { return PlainVanillaPayoff::operator()(g_(x)); }
private:
const std::function<Real(Real)> g_;
};
BOOST_AUTO_TEST_CASE(testMonteCarloBSOptionPricing) {
BOOST_TEST_MESSAGE("Testing Monte Carlo BS option pricing...");
const DayCounter dc = Actual365Fixed();
const Date today = Date(22, June, 2016);
const Date maturity = today + Period(1, Years);
const Time t = dc.yearFraction(today, maturity);
const Real strike = 110;
const ext::shared_ptr<StrikedTypePayoff> payoff =
ext::make_shared<PlainVanillaPayoff>(Option::Call, strike);
const ext::shared_ptr<Exercise> exercise =
ext::make_shared<EuropeanExercise>(maturity);
// Ornstein-Uhlenbeck
const Real speed = 2.3;
const Real level = 100;
const Real sigma = 0.35;
const Real x0 = 100.0;
const Real s0 = x0;
const Volatility vol = 0.25;
const Real rRate = 0.10;
const Real qRate = 0.04;
const Handle<Quote> spot(ext::make_shared<SimpleQuote>(s0));
const Handle<YieldTermStructure> qTS(flatRate(today, qRate, dc));
const Handle<YieldTermStructure> rTS(flatRate(today, rRate, dc));
const Handle<BlackVolTermStructure> vTS(flatVol(today, vol, dc));
const ext::shared_ptr<GeneralizedBlackScholesProcess> bsProcess(
ext::make_shared<GeneralizedBlackScholesProcess>(
spot, qTS, rTS, vTS));
const ext::shared_ptr<OrnsteinUhlenbeckProcess> ouProcess(
ext::make_shared<OrnsteinUhlenbeckProcess>(
speed, sigma, x0, level));
std::vector<Date> maturities = { today + Period(6, Months), maturity };
const NormalCLVModel m(bsProcess, ouProcess, maturities, 8);
const std::function<Real(Real, Real)> g = m.g();
const Size nSims = 32767;
const LowDiscrepancy::rsg_type ld
= LowDiscrepancy::make_sequence_generator(1, 23455);
Statistics stat;
for (Size i=0; i < nSims; ++i) {
const Real dw = ld.nextSequence().value.front();
const Real o_t = ouProcess->evolve(0, x0, t, dw);
const Real s = g(t, o_t);
stat.add((*payoff)(s));
}
Real calculated = stat.mean() * rTS->discount(maturity);
VanillaOption option(payoff, exercise);
option.setPricingEngine(
ext::make_shared<AnalyticEuropeanEngine>(bsProcess));
const Real expected = option.NPV();
const Real tol = 0.01;
if (std::fabs(calculated - expected) > tol) {
BOOST_FAIL("Failed to reproduce Monte-Carlo vanilla option price "
<< "\n time: " << maturity
<< "\n strike: " << strike
<< "\n calculated: " << calculated
<< "\n expected: " << expected);
}
VanillaOption fdmOption(
ext::make_shared<CLVModelPayoff>(payoff->optionType(), payoff->strike(),
[&](Real _x) { return g(t, _x); }),
exercise);
fdmOption.setPricingEngine(
ext::make_shared<FdOrnsteinUhlenbeckVanillaEngine>(
ouProcess, rTS.currentLink(), 50, 800));
calculated = fdmOption.NPV();
if (std::fabs(calculated - expected) > tol) {
BOOST_FAIL("Failed to reproduce FDM vanilla option price "
<< "\n time: " << maturity
<< "\n strike: " << strike
<< "\n calculated: " << calculated
<< "\n expected: " << expected);
}
}
BOOST_AUTO_TEST_CASE(testMoustacheGraph, *precondition(if_speed(Slow))) {
BOOST_TEST_MESSAGE(
"Testing double no-touch pricing with normal CLV model...");
/*
The comparison of Black-Scholes and normal CLV prices is derived
from figure 8.8 in Iain J. Clark's book,
Foreign Exchange Option Pricing: A Practitioner’s Guide
*/
const DayCounter dc = ActualActual(ActualActual::ISDA);
const Date todaysDate(5, Aug, 2016);
const Date maturityDate = todaysDate + Period(1, Years);
const Time maturityTime = dc.yearFraction(todaysDate, maturityDate);
Settings::instance().evaluationDate() = todaysDate;
const Real s0 = 100;
const Handle<Quote> spot(ext::make_shared<SimpleQuote>(s0));
const Rate r = 0.02;
const Rate q = 0.01;
// parameter of the "calibrated" Heston model
const Real kappa = 1.0;
const Real theta = 0.06;
const Real rho = -0.8;
const Real sigma = 0.8;
const Real v0 = 0.09;
const Handle<YieldTermStructure> rTS(flatRate(r, dc));
const Handle<YieldTermStructure> qTS(flatRate(q, dc));
const ext::shared_ptr<HestonModel> hestonModel(
ext::make_shared<HestonModel>(
ext::make_shared<HestonProcess>(
rTS, qTS, spot, v0, kappa, theta, sigma, rho)));
const Handle<BlackVolTermStructure> vTS(
ext::make_shared<HestonBlackVolSurface>(
Handle<HestonModel>(hestonModel)));
const ext::shared_ptr<GeneralizedBlackScholesProcess> bsProcess =
ext::make_shared<GeneralizedBlackScholesProcess>(
spot, qTS, rTS, vTS);
// Ornstein-Uhlenbeck
const Real speed = -0.80;
const Real level = 100;
const Real sigmaOU = 0.15;
const Real x0 = 100;
const ext::shared_ptr<OrnsteinUhlenbeckProcess> ouProcess(
ext::make_shared<OrnsteinUhlenbeckProcess>(
speed, sigmaOU, x0, level));
const ext::shared_ptr<Exercise> europeanExercise(
ext::make_shared<EuropeanExercise>(maturityDate));
VanillaOption vanillaOption(
ext::make_shared<PlainVanillaPayoff>(Option::Call, s0),
europeanExercise);
vanillaOption.setPricingEngine(
ext::make_shared<AnalyticHestonEngine>(hestonModel));
const Volatility atmVol = vanillaOption.impliedVolatility(
vanillaOption.NPV(),
ext::make_shared<GeneralizedBlackScholesProcess>(spot, qTS, rTS,
Handle<BlackVolTermStructure>(flatVol(std::sqrt(theta), dc))));
const ext::shared_ptr<PricingEngine> analyticEngine(
ext::make_shared<AnalyticDoubleBarrierBinaryEngine>(
ext::make_shared<GeneralizedBlackScholesProcess>(
spot, qTS, rTS,
Handle<BlackVolTermStructure>(flatVol(atmVol, dc)))));
std::vector<Date> maturities(1, todaysDate + Period(2, Weeks));
while (maturities.back() < maturityDate)
maturities.push_back(maturities.back() + Period(2, Weeks));
const NormalCLVModel m(bsProcess, ouProcess, maturities, 8);
const std::function<Real(Real, Real)> g = m.g();
const Size n = 18;
Array barrier_lo(n), barrier_hi(n), bsNPV(n);
const ext::shared_ptr<CashOrNothingPayoff> payoff =
ext::make_shared<CashOrNothingPayoff>(Option::Call, 0.0, 1.0);
for (Size i=0; i < n; ++i) {
const Real dist = 10.0+5.0*i;
barrier_lo[i] = std::max(s0 - dist, 1e-2);
barrier_hi[i] = s0 + dist;
DoubleBarrierOption doubleBarrier(
DoubleBarrier::KnockOut, barrier_lo[i], barrier_hi[i], 0.0,
payoff,
europeanExercise);
doubleBarrier.setPricingEngine(analyticEngine);
bsNPV[i] = doubleBarrier.NPV();
}
typedef SobolBrownianBridgeRsg rsg_type;
typedef PathGenerator<rsg_type>::sample_type sample_type;
const Size factors = 1;
const Size tSteps = 200;
const TimeGrid grid(maturityTime, tSteps);
const ext::shared_ptr<PathGenerator<rsg_type> > pathGenerator =
ext::make_shared<PathGenerator<rsg_type> >(
ouProcess, grid, rsg_type(factors, tSteps), false);
const Size nSims = 100000;
std::vector<GeneralStatistics> stats(n);
const DiscountFactor df = rTS->discount(maturityDate);
for (Size i=0; i < nSims; ++i) {
std::vector<bool> touch(n, false);
const sample_type& path = pathGenerator->next();
Real s;
for (Size j=1; j <= tSteps; ++j) {
const Time t = grid.at(j);
s = g(t, path.value.at(j));
for (Size u=0; u < n; ++u) {
if (s <= barrier_lo[u] || s >= barrier_hi[u]) {
touch[u] = true;
}
}
}
for (Size u=0; u < n; ++u) {
if (touch[u]) {
stats[u].add(0.0);
}
else {
stats[u].add(df*(*payoff)(s));
}
}
}
const Real expected[] = {
0.0093023407, 0.090099067, 0.13903052, 0.11206888, 0.059511722,
0.016627484, -0.0091168814, -0.020725808, -0.022513829,
-0.020280851, -0.015967361, -0.011476705, -0.0071604902,
-0.003219595, -0.00014875974, 0.0049910036, 0.0034770584,
0.0023821554};
const Real tol = 1e-5;
for (Size u=0; u < n; ++u) {
const Real calculated = stats[u].mean() - bsNPV[u];
if (std::fabs(calculated - expected[u]) > tol) {
BOOST_FAIL("Failed to reproduce Double no Touch prices"
<< "\n time: " << maturityDate
<< "\n barrier lower: " << barrier_lo[u]
<< "\n barrier high: " << barrier_hi[u]
<< "\n calculated: " << calculated
<< "\n expected: " << expected[u]);
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|