File: numericaldifferentiation.cpp

package info (click to toggle)
quantlib 1.39-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,264 kB
  • sloc: cpp: 396,561; makefile: 6,539; python: 272; sh: 154; lisp: 86
file content (304 lines) | stat: -rw-r--r-- 10,892 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2015 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "toplevelfixture.hpp"
#include "utilities.hpp"

#include <ql/math/matrix.hpp>
#include <ql/math/factorial.hpp>
#include <ql/methods/finitedifferences/operators/numericaldifferentiation.hpp>
#include <cmath>
#include <algorithm>

using namespace QuantLib;
using namespace boost::unit_test_framework;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(NumericalDifferentiationTests)

bool isTheSame(Real a, Real b) {
    constexpr double eps = 500 * QL_EPSILON;

    if (std::fabs(b) < QL_EPSILON)
        return std::fabs(a) < eps;
    else
        return std::fabs((a - b)/b) < eps;
}

void checkTwoArraysAreTheSame(const Array& calculated,
                              const Array& expected) {
    bool correct = (calculated.size() == expected.size())
        && std::equal(calculated.begin(), calculated.end(),
                      expected.begin(), isTheSame);

    if (!correct) {
        BOOST_FAIL("Failed to reproduce expected array"
                   << "\n    calculated: " << calculated
                   << "\n    expected:   " << expected
                   << "\n    difference: " << expected - calculated);
    }
}

void singleValueTest(const std::string& comment,
                     Real calculated, Real expected, Real tol) {
    if (std::fabs(calculated - expected) > tol)
        BOOST_FAIL("Failed to reproduce " << comment
                   << " order derivative"
                   << "\n    calculated: " << calculated
                   << "\n      expected: " << expected
                   << "\n     tolerance: " << tol
                   << "\n    difference: "
                   << expected - calculated);
}


BOOST_AUTO_TEST_CASE(testTabulatedCentralScheme) {
    BOOST_TEST_MESSAGE("Testing numerical differentiation "
                       "using the central scheme...");
    const std::function<Real(Real)> f;

    const NumericalDifferentiation::Scheme central
        = NumericalDifferentiation::Central;

    // see http://en.wikipedia.org/wiki/Finite_difference_coefficient
    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 1.0, 3, central).weights(),
        {-0.5, 0.0, 0.5});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 0.5, 3, central).weights(),
        {-1.0, 0.0, 1.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 0.25, 7, central).weights(),
        {-4/60.0, 12/20.0, -12/4.0, 0.0, 12/4.0, -12/20.0, 4/60.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 4, std::pow(0.5, 0.25), 9, central).weights(),
        {14/240.0, -4/5.0, 338/60.0, -244/15.0, 182/8.0, -244/15.0, 338/60.0, -4/5.0, 14/240.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 0.5, 7, central).offsets(),
        {-1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5});
}

BOOST_AUTO_TEST_CASE(testTabulatedBackwardScheme) {
    BOOST_TEST_MESSAGE("Testing numerical differentiation "
                       "using the backward scheme...");
    const std::function<Real(Real)> f;

    const NumericalDifferentiation::Scheme backward
        = NumericalDifferentiation::Backward;

    // see http://en.wikipedia.org/wiki/Finite_difference_coefficient
    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 1.0, 2, backward).weights(),
        {1.0, -1.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 2, 2.0, 4, backward).weights(),
        {2/4.0, -5/4.0, 4/4.0, -1.0/4.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 4, 1.0, 6, backward).weights(),
        {3.0, -14.0, 26.0, -24.0, 11.0, -2.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 2, 0.5, 4, backward).offsets(),
        {0.0, -0.5, -1.0, -1.5});
}

BOOST_AUTO_TEST_CASE(testTabulatedForwardScheme) {
    BOOST_TEST_MESSAGE("Testing numerical differentiation "
                       "using the Forward scheme...");
    const std::function<Real(Real)> f;

    const NumericalDifferentiation::Scheme forward
        = NumericalDifferentiation::Forward;

    // see http://en.wikipedia.org/wiki/Finite_difference_coefficient
    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 1.0, 2, forward).weights(),
        {-1.0, 1.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 0.5, 3, forward).weights(),
        {-6/2.0, 4.0, -2/2.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, 0.5, 7, forward).weights(),
        {-98/20.0, 12.0, -30/2.0, 40/3.0, -30/4.0, 12/5.0, -2/6.0});

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 2, 0.5, 4, forward).offsets(),
        {0.0, 0.5, 1.0, 1.5});
}

BOOST_AUTO_TEST_CASE(testIrregularSchemeFirstOrder) {
    BOOST_TEST_MESSAGE("Testing numerical differentiation "
                       "of first order using an irregular scheme...");
    const std::function<Real(Real)> f;

    const Real h1 = 5e-7;
    const Real h2 = 3e-6;

    const Real alpha = -h2/(h1*(h1+h2));
    const Real gamma =  h1/(h2*(h1+h2));
    const Real beta = -alpha - gamma;

    Array offsets = { -h1, 0.0, h2 };

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 1, offsets).weights(),
        { alpha, beta, gamma });
}

BOOST_AUTO_TEST_CASE(testIrregularSchemeSecondOrder) {
    BOOST_TEST_MESSAGE("Testing numerical differentiation "
                       "of second order using an irregular scheme...");
    const std::function<Real(Real)> f;

    const Real h1 = 2e-7;
    const Real h2 = 8e-8;

    const Real alpha = 2/(h1*(h1+h2));
    const Real gamma = 2/(h2*(h1+h2));
    const Real beta = -alpha - gamma;

    Array offsets = { -h1, 0.0, h2 };

    checkTwoArraysAreTheSame(
        NumericalDifferentiation(f, 2, offsets).weights(),
        {alpha, beta, gamma});
}

BOOST_AUTO_TEST_CASE(testDerivativesOfSineFunction) {
    BOOST_TEST_MESSAGE("Testing numerical differentiation"
                       " of sin function...");

    const std::function<Real(Real)> f = [](Real x) -> Real { return std::sin(x); };

    const std::function<Real(Real)> df_central
        = NumericalDifferentiation(f, 1, std::sqrt(QL_EPSILON), 3,
                                   NumericalDifferentiation::Central);

    const std::function<Real(Real)> df_backward
        = NumericalDifferentiation(f, 1, std::sqrt(QL_EPSILON), 3,
                                   NumericalDifferentiation::Backward);

    const std::function<Real(Real)> df_forward
        = NumericalDifferentiation(f, 1, std::sqrt(QL_EPSILON), 3,
                                   NumericalDifferentiation::Forward);

    for (Real x=0.0; x < 5.0; x+=0.1) {
        const Real calculatedCentral = df_central(x);
        const Real calculatedBackward = df_backward(x);
        const Real calculatedForward = df_forward(x);
        const Real expected = std::cos(x);

        singleValueTest("central first", calculatedCentral, expected, 1e-8);
        singleValueTest("backward first", calculatedBackward, expected, 1e-6);
        singleValueTest("forward first", calculatedForward, expected, 1e-6);
    }

    const std::function<Real(Real)> df4_central
        = NumericalDifferentiation(f, 4, 1e-2, 7,
                                   NumericalDifferentiation::Central);
    const std::function<Real(Real)> df4_backward
        = NumericalDifferentiation(f, 4, 1e-2, 7,
                                   NumericalDifferentiation::Backward);
    const std::function<Real(Real)> df4_forward
        = NumericalDifferentiation(f, 4, 1e-2, 7,
                                   NumericalDifferentiation::Forward);

    for (Real x=0.0; x < 5.0; x+=0.1) {
        const Real calculatedCentral = df4_central(x);
        const Real calculatedBackward = df4_backward(x);
        const Real calculatedForward = df4_forward(x);
        const Real expected = std::sin(x);

        singleValueTest("central 4th", calculatedCentral, expected, 1e-4);
        singleValueTest("backward 4th", calculatedBackward, expected, 1e-4);
        singleValueTest("forward 4th", calculatedForward, expected, 1e-4);
    }

    const Array offsets = {-0.01, -0.02, 0.03, 0.014, 0.041};
    NumericalDifferentiation df3_irregular(f, 3, offsets);

    checkTwoArraysAreTheSame(df3_irregular.offsets(), offsets);

    for (Real x=0.0; x < 5.0; x+=0.1) {
        const Real calculatedIrregular = df3_irregular(x);
        const Real expected = -std::cos(x);

        singleValueTest("irregular 3th", calculatedIrregular, expected, 5e-5);
    }
}


Array vandermondeCoefficients(
                              Size order, Real x, const Array& gridPoints) {

    const Array q = gridPoints - x;
    const Size n = gridPoints.size();

    Matrix m(n, n, 1.0);
    for (Size i=1; i < n; ++i) {
        const Real fact = Factorial::get(i);
        for (Size j=0; j < n; ++j)
            m[i][j] = std::pow(q[j], Integer(i)) / fact;
    }

    Array b(n, 0.0);
    b[order] = 1.0;
    return inverse(m)*b;
}


BOOST_AUTO_TEST_CASE(testCoefficientBasedOnVandermonde) {
    BOOST_TEST_MESSAGE("Testing coefficients from numerical differentiation"
                       " by comparison with results from"
                       " Vandermonde matrix inversion...");
    const std::function<Real(Real)> f;

    for (Natural order=0; order < 5; ++order) {
        for (Natural nGridPoints = order + 1;
            nGridPoints < order + 3; ++nGridPoints) {

            Array gridPoints(nGridPoints);
            for (Natural i=0; i < nGridPoints; ++i) {
                const Real p = Real(i);
                gridPoints[i] = std::sin(p) + std::cos(p); // strange points
            }

            const Real x = 0.3902842; // strange points
            const Array weightsVandermonde
                = vandermondeCoefficients(order, x, gridPoints);
            const NumericalDifferentiation nd(f, order, gridPoints-x);

            checkTwoArraysAreTheSame(gridPoints, nd.offsets() + x);
            checkTwoArraysAreTheSame(weightsVandermonde, nd.weights());
        }
    }
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()