1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2012 Peter Caspers
Copyright (C) 2013 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/matrixutilities/expm.hpp>
#include <ql/math/ode/adaptiverungekutta.hpp>
#include <complex>
using namespace QuantLib;
using namespace boost::unit_test_framework;
using std::exp;
using std::sin;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(OdeTests)
struct ode1 {
Real operator()(Real x, Real y) const { return y; }
};
struct ode2 {
std::complex<Real> operator()(Real x,
const std::complex<Real>& y) {
return std::complex<Real>(0.0,1.0)*y;
}
};
struct ode3 {
std::vector<Real> operator()(Real x, const std::vector<Real>& y) {
std::vector<Real> r(2);
r[0] = y[1]; r[1] = -y[0];
return r;
}
};
struct ode4 {
std::vector<std::complex<Real> > operator()(
const std::complex<Real>& x,
const std::vector<std::complex<Real> >& y) {
std::vector<std::complex<Real> > r(2);
r[0] = y[1]; r[1] = -y[0];
return r;
}
};
BOOST_AUTO_TEST_CASE(testAdaptiveRungeKutta) {
BOOST_TEST_MESSAGE("Testing adaptive Runge Kutta...");
AdaptiveRungeKutta<Real> rk_real(1E-12,1E-4,0.0);
AdaptiveRungeKutta<std::complex<Real> > rk_complex(1E-12,1E-4,0.0);
Real tol1 = 5E-10, tol2 = 2E-12, tol3 = 2E-12, tol4 = 2E-12;
// f'=f, f(0)=1
AdaptiveRungeKutta<Real>::OdeFct1d ode1_ = ode1();
Real y10=1;
// f'=f, f(0)=i
AdaptiveRungeKutta<std::complex<Real> >::OdeFct1d ode2_ = ode2();
std::complex<Real> y20(0.0,1.0);
// f''=-f, f(0)=0, f'(0)=1
AdaptiveRungeKutta<Real>::OdeFct ode3_ = ode3();
std::vector<Real> y30(2); y30[0] = 0.0; y30[1] = 1.0;
// f''=-f, f(0)=1, f'(0)=i
AdaptiveRungeKutta<std::complex<Real> >::OdeFct ode4_ = ode4();
std::vector<std::complex<Real> > y40(2);
y40[0] = 1.0;
y40[1] = std::complex<Real>(0.0,1.0);
Real x=0.0;
Real y1 = y10;
std::complex<Real> y2 = y20;
std::vector<Real> y3 = y30;
std::vector<std::complex<Real> > y4 = y40;
while (x<5.0) {
Real exact1 = exp(x);
std::complex<Real> exact2 =
std::exp(std::complex<Real>(0.0,x)) * std::complex<Real>(0.0,1.0);
Real exact3 = sin(x);
std::complex<Real> exact4 = std::exp(std::complex<Real>(0.0,x));
if ( std::fabs( exact1 - y1 ) > tol1 )
BOOST_FAIL("Error in ode #1: exact solution at x=" << x
<< " is " << exact1
<< ", numerical solution is " << y1
<< " difference " << std::fabs(exact1-y1)
<< " outside tolerance " << tol1);
if ( abs( exact2 - y2 ) > tol2 )
BOOST_FAIL("Error in ode #2: exact solution at x=" << x
<< " is " << exact2
<< ", numerical solution is " << y2
<< " difference " << abs(exact2-y2)
<< " outside tolerance " << tol2);
if ( std::fabs( exact3 - y3[0] ) > tol3 )
BOOST_FAIL("Error in ode #3: exact solution at x=" << x
<< " is " << exact3
<< ", numerical solution is " << y3[0]
<< " difference " << std::fabs(exact3-y3[0])
<< " outside tolerance " << tol3);
if ( abs( exact4 - y4[0] ) > tol4 )
BOOST_FAIL("Error in ode #4: exact solution at x=" << x
<< " is " << exact4
<< ", numerical solution is " << y4[0]
<< " difference " << abs(exact4-y4[0])
<< " outside tolerance " << tol4);
x+=0.01;
y1=rk_real(ode1_,y10,0.0,x);
y2=rk_complex(ode2_,y20,0.0,x);
y3=rk_real(ode3_,y30,0.0,x);
y4=rk_complex(ode4_,y40,0.0,x);
}
}
Real frobenuiusNorm(const Matrix& m) {
return std::sqrt(DotProduct((m*transpose(m)).diagonal(),
Array(m.rows(), 1.0)));
}
BOOST_AUTO_TEST_CASE(testMatrixExponential) {
BOOST_TEST_MESSAGE("Testing matrix exponential based on ode...");
// Reference results are taken from
// http://www.millersville.edu/~bikenaga/linear-algebra/matrix-exponential/matrix-exponential.html
Matrix m(3, 3);
m[0][0] = 5; m[0][1] =-6; m[0][2] =-6;
m[1][0] =-1; m[1][1] = 4; m[1][2] = 2;
m[2][0] = 3; m[2][1] =-6; m[2][2] =-4;
const Real tol = 1e-12;
for (Real t=0.01; t < 11; t+=t) {
const Matrix calculated = Expm(m, t, tol);
Matrix expected(3, 3);
expected[0][0] = -3*std::exp(t)+4*std::exp(2*t);
expected[0][1] = 6*std::exp(t)-6*std::exp(2*t);
expected[0][2] = 6*std::exp(t)-6*std::exp(2*t);
expected[1][0] = std::exp(t)- std::exp(2*t);
expected[1][1] = -2*std::exp(t)+3*std::exp(2*t);
expected[1][2] = -2*std::exp(t)+2*std::exp(2*t);
expected[2][0] = -3*std::exp(t)+3*std::exp(2*t);
expected[2][1] = 6*std::exp(t)-6*std::exp(2*t);
expected[2][2] = 6*std::exp(t)-5*std::exp(2*t);
Matrix diff = calculated - expected;
Real relDiffNorm = frobenuiusNorm(diff)/frobenuiusNorm(expected);
if ( std::fabs(relDiffNorm) > 100*tol) {
BOOST_FAIL("Failed to reproduce expected matrix exponential."
<< "\n rel. difference norm: " << relDiffNorm
<< "\n tolerance : " << 100*tol);
}
const Matrix negativeTime = Expm((-1)*m, -t, tol);
diff = negativeTime - expected;
relDiffNorm = frobenuiusNorm(diff)/frobenuiusNorm(expected);
if ( std::fabs(relDiffNorm) > 100*tol) {
BOOST_FAIL("Failed to reproduce expected matrix exponential."
<< "\n rel. difference norm: " << relDiffNorm
<< "\n tolerance : " << 100*tol);
}
}
}
BOOST_AUTO_TEST_CASE(testMatrixExponentialOfZero) {
BOOST_TEST_MESSAGE("Testing matrix exponential of a zero matrix "
"based on ode...");
Matrix m(3, 3, 0.0);
constexpr double tol = 100*QL_EPSILON;
constexpr double t=1.0;
const Matrix calculated = Expm(m, t);
for (Size i=0; i < calculated.rows(); ++i) {
for (Size j=0; j < calculated.columns(); ++j) {
const Real kroneckerDelta = (i==j)? 1.0 : 0.0;
if (std::fabs(calculated[i][j] -kroneckerDelta) > tol) {
BOOST_FAIL("Failed to reproduce expected matrix exponential."
<< "\n tolerance : " << tol);
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|