File: optimizers.cpp

package info (click to toggle)
quantlib 1.39-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,264 kB
  • sloc: cpp: 396,561; makefile: 6,539; python: 272; sh: 154; lisp: 86
file content (545 lines) | stat: -rw-r--r-- 21,278 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2007 Marco Bianchetti
 Copyright (C) 2007 François du Vignaud
 Copyright (C) 2007 Giorgio Facchinetti
 Copyright (C) 2012 Ralph Schreyer
 Copyright (C) 2012 Mateusz Kapturski

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/optimization/bfgs.hpp>
#include <ql/math/optimization/conjugategradient.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/optimization/costfunction.hpp>
#include <ql/math/optimization/differentialevolution.hpp>
#include <ql/math/optimization/goldstein.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/steepestdescent.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

using std::pow;
using std::cos;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(OptimizersTests)

struct NamedOptimizationMethod {
    ext::shared_ptr<OptimizationMethod> optimizationMethod;
    std::string name;
};

std::vector<ext::shared_ptr<CostFunction> > costFunctions_;
std::vector<ext::shared_ptr<Constraint> > constraints_;
std::vector<Array> initialValues_;
std::vector<Size> maxIterations_, maxStationaryStateIterations_;
std::vector<Real> rootEpsilons_, functionEpsilons_, gradientNormEpsilons_;
std::vector<ext::shared_ptr<EndCriteria> > endCriterias_;
std::vector<std::vector<NamedOptimizationMethod> > optimizationMethods_;
std::vector<Array> xMinExpected_, yMinExpected_;

class OneDimensionalPolynomialDegreeN : public CostFunction {
  public:
    explicit OneDimensionalPolynomialDegreeN(const Array& coefficients)
    : coefficients_(coefficients),
      polynomialDegree_(coefficients.size()-1) {}

    Real value(const Array& x) const override {
        QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
        Real y = 0;
        for (Size i=0; i<=polynomialDegree_; ++i)
            y += coefficients_[i]*std::pow(x[0],static_cast<int>(i));
        return y;
    }

    Array values(const Array& x) const override {
        QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
        return Array(1, value(x));
    }

  private:
    const Array coefficients_;
    const Size polynomialDegree_;
};


// The goal of this cost function is simply to call another optimization inside
// in order to test nested optimizations
class OptimizationBasedCostFunction : public CostFunction {
  public:
    Real value(const Array&) const override { return 1.0; }

    Array values(const Array&) const override {
        // dummy nested optimization
        Array coefficients(3, 1.0);
        OneDimensionalPolynomialDegreeN oneDimensionalPolynomialDegreeN(coefficients);
        NoConstraint constraint;
        Array initialValues(1, 100.0);
        Problem problem(oneDimensionalPolynomialDegreeN, constraint,
                        initialValues);
        LevenbergMarquardt optimizationMethod;
        //Simplex optimizationMethod(0.1);
        //ConjugateGradient optimizationMethod;
        //SteepestDescent optimizationMethod;
        EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
        optimizationMethod.minimize(problem, endCriteria);
        // return dummy result
        return Array(1, 0);
    }
};


enum OptimizationMethodType {simplex,
                             levenbergMarquardt,
                             levenbergMarquardt2,
                             conjugateGradient,
                             conjugateGradient_goldstein,
                             steepestDescent,
                             steepestDescent_goldstein,
                             bfgs,
                             bfgs_goldstein};

std::string optimizationMethodTypeToString(OptimizationMethodType type) {
    switch (type) {
      case simplex:
        return "Simplex";
      case levenbergMarquardt:
        return "Levenberg Marquardt";
      case levenbergMarquardt2:
        return "Levenberg Marquardt (cost function's jacbobian)";
      case conjugateGradient:
        return "Conjugate Gradient";
      case steepestDescent:
        return "Steepest Descent";
      case bfgs:
        return "BFGS";
      case conjugateGradient_goldstein:
        return "Conjugate Gradient (Goldstein line search)";
      case steepestDescent_goldstein:
        return "Steepest Descent (Goldstein line search)";
      case bfgs_goldstein:
        return "BFGS (Goldstein line search)";
      default:
        QL_FAIL("unknown OptimizationMethod type");
    }
}


ext::shared_ptr<OptimizationMethod> makeOptimizationMethod(
                                                           OptimizationMethodType optimizationMethodType,
                                                           Real simplexLambda,
                                                           Real levenbergMarquardtEpsfcn,
                                                           Real levenbergMarquardtXtol,
                                                           Real levenbergMarquardtGtol) {
    switch (optimizationMethodType) {
      case simplex:
        return ext::shared_ptr<OptimizationMethod>(
                new Simplex(simplexLambda));
      case levenbergMarquardt:
        return ext::shared_ptr<OptimizationMethod>(
                new LevenbergMarquardt(levenbergMarquardtEpsfcn,
                                       levenbergMarquardtXtol,
                                       levenbergMarquardtGtol));
      case levenbergMarquardt2:
        return ext::shared_ptr<OptimizationMethod>(
                new LevenbergMarquardt(levenbergMarquardtEpsfcn,
                                       levenbergMarquardtXtol,
                                       levenbergMarquardtGtol,
                                       true));
      case conjugateGradient:
        return ext::shared_ptr<OptimizationMethod>(new ConjugateGradient);
      case steepestDescent:
        return ext::shared_ptr<OptimizationMethod>(new SteepestDescent);
      case bfgs:
        return ext::shared_ptr<OptimizationMethod>(new BFGS);
      case conjugateGradient_goldstein:
        return ext::shared_ptr<OptimizationMethod>(new ConjugateGradient(ext::make_shared<GoldsteinLineSearch>()));
      case steepestDescent_goldstein:
        return ext::shared_ptr<OptimizationMethod>(new SteepestDescent(ext::make_shared<GoldsteinLineSearch>()));
      case bfgs_goldstein:
        return ext::shared_ptr<OptimizationMethod>(new BFGS(ext::make_shared<GoldsteinLineSearch>()));
      default:
        QL_FAIL("unknown OptimizationMethod type");
    }
}


std::vector<NamedOptimizationMethod> makeOptimizationMethods(
                                                             const std::vector<OptimizationMethodType>& optimizationMethodTypes,
                                                             Real simplexLambda,
                                                             Real levenbergMarquardtEpsfcn,
                                                             Real levenbergMarquardtXtol,
                                                             Real levenbergMarquardtGtol) {
    std::vector<NamedOptimizationMethod> results;
    for (auto optimizationMethodType : optimizationMethodTypes) {
        NamedOptimizationMethod namedOptimizationMethod;
        namedOptimizationMethod.optimizationMethod = makeOptimizationMethod(
                optimizationMethodType, simplexLambda, levenbergMarquardtEpsfcn,
                levenbergMarquardtXtol, levenbergMarquardtGtol);
        namedOptimizationMethod.name = optimizationMethodTypeToString(optimizationMethodType);
        results.push_back(namedOptimizationMethod);
    }
    return results;
}

Real maxDifference(const Array& a, const Array& b) {
    Array diff = a-b;
    Real maxDiff = 0.0;
    for (Real i : diff)
        maxDiff = std::max(maxDiff, std::fabs(i));
    return maxDiff;
}

// Set up, for each cost function, all the ingredients for optimization:
// constraint, initial guess, end criteria, optimization methods.
void setup() {

    // Cost function n. 1: 1D polynomial of degree 2 (parabolic function y=a*x^2+b*x+c)
    const Real a = 1;   // required a > 0
    const Real b = 1;
    const Real c = 1;
    Array coefficients(3);
    coefficients[0]= c;
    coefficients[1]= b;
    coefficients[2]= a;
    costFunctions_.push_back(ext::shared_ptr<CostFunction>(
            new OneDimensionalPolynomialDegreeN(coefficients)));
    // Set constraint for optimizers: unconstrained problem
    constraints_.push_back(ext::shared_ptr<Constraint>(new NoConstraint()));
    // Set initial guess for optimizer
    Array initialValue(1);
    initialValue[0] = -100;
    initialValues_.push_back(initialValue);
    // Set end criteria for optimizer
    maxIterations_.push_back(10000);                // maxIterations
    maxStationaryStateIterations_.push_back(100);   // MaxStationaryStateIterations
    rootEpsilons_.push_back(1e-8);                  // rootEpsilon
    functionEpsilons_.push_back(1e-8);              // functionEpsilon
    gradientNormEpsilons_.push_back(1e-8);          // gradientNormEpsilon
    endCriterias_.push_back(ext::make_shared<EndCriteria>(
            maxIterations_.back(), maxStationaryStateIterations_.back(),
                            rootEpsilons_.back(), functionEpsilons_.back(),
                            gradientNormEpsilons_.back()));
    // Set optimization methods for optimizer
    std::vector<OptimizationMethodType> optimizationMethodTypes = {
        simplex, levenbergMarquardt, levenbergMarquardt2, conjugateGradient,
        bfgs //, steepestDescent
    };
    Real simplexLambda = 0.1;                   // characteristic search length for simplex
    Real levenbergMarquardtEpsfcn = 1.0e-8;     // parameters specific for Levenberg-Marquardt
    Real levenbergMarquardtXtol   = 1.0e-8;     //
    Real levenbergMarquardtGtol   = 1.0e-8;     //
    optimizationMethods_.push_back(makeOptimizationMethods(
            optimizationMethodTypes,
            simplexLambda, levenbergMarquardtEpsfcn, levenbergMarquardtXtol,
            levenbergMarquardtGtol));
    // Set expected results for optimizer
    Array xMinExpected(1),yMinExpected(1);
    xMinExpected[0] = -b/(2.0*a);
    yMinExpected[0] = -(b*b-4.0*a*c)/(4.0*a);
    xMinExpected_.push_back(xMinExpected);
    yMinExpected_.push_back(yMinExpected);
}


BOOST_AUTO_TEST_CASE(test) {
    BOOST_TEST_MESSAGE("Testing optimizers...");

    setup();

    // Loop over problems (currently there is only 1 problem)
    for (Size i=0; i<costFunctions_.size(); ++i) {
        Problem problem(*costFunctions_[i], *constraints_[i],
                        initialValues_[i]);
        Array initialValues = problem.currentValue();
        // Loop over optimizers
        for (Size j=0; j<(optimizationMethods_[i]).size(); ++j) {
            Real rootEpsilon = endCriterias_[i]->rootEpsilon();
            Size endCriteriaTests = 1;
           // Loop over rootEpsilon
            for (Size k=0; k<endCriteriaTests; ++k) {
                problem.setCurrentValue(initialValues);
                EndCriteria endCriteria(
                            endCriterias_[i]->maxIterations(),
                            endCriterias_[i]->maxStationaryStateIterations(),
                            rootEpsilon,
                            endCriterias_[i]->functionEpsilon(),
                            endCriterias_[i]->gradientNormEpsilon());
                rootEpsilon *= .1;
                EndCriteria::Type endCriteriaResult =
                    optimizationMethods_[i][j].optimizationMethod->minimize(
                    problem, endCriteria);
                Array xMinCalculated = problem.currentValue();
                Array yMinCalculated = problem.values(xMinCalculated);

                // Check optimization results vs known solution
                bool completed;
                switch (endCriteriaResult) {
                  case EndCriteria::None:
                  case EndCriteria::MaxIterations:
                  case EndCriteria::Unknown:
                    completed = false;
                    break;
                  default:
                    completed = true;
                }

                Real xError = maxDifference(xMinCalculated,xMinExpected_[i]);
                Real yError = maxDifference(yMinCalculated,yMinExpected_[i]);

                bool correct = (xError <= endCriteria.rootEpsilon() ||
                                yError <= endCriteria.functionEpsilon());

                if ((!completed) || (!correct))
                    BOOST_ERROR("costFunction # = " << i <<
                                "\nOptimizer: " <<
                                optimizationMethods_[i][j].name <<
                                "\n    function evaluations: " <<
                                problem.functionEvaluation()  <<
                                "\n    gradient evaluations: " <<
                                problem.gradientEvaluation() <<
                                "\n    x expected:           " <<
                                xMinExpected_[i] <<
                                "\n    x calculated:         " <<
                                std::setprecision(9) << xMinCalculated <<
                                "\n    x difference:         " <<
                                xMinExpected_[i]- xMinCalculated <<
                                "\n    rootEpsilon:          " <<
                                std::setprecision(9) <<
                                endCriteria.rootEpsilon() <<
                                "\n    y expected:           " <<
                                yMinExpected_[i] <<
                                "\n    y calculated:         " <<
                                std::setprecision(9) << yMinCalculated <<
                                "\n    y difference:         " <<
                                yMinExpected_[i]- yMinCalculated <<
                                "\n    functionEpsilon:      " <<
                                std::setprecision(9) <<
                                endCriteria.functionEpsilon() <<
                                "\n    endCriteriaResult:    " <<
                                endCriteriaResult);
            }
        }
    }
}

BOOST_AUTO_TEST_CASE(nestedOptimizationTest) {
    BOOST_TEST_MESSAGE("Testing nested optimizations...");
    OptimizationBasedCostFunction optimizationBasedCostFunction;
    NoConstraint constraint;
    Array initialValues(1, 0.0);
    Problem problem(optimizationBasedCostFunction, constraint,
                    initialValues);
    LevenbergMarquardt optimizationMethod;
    //Simplex optimizationMethod(0.1);
    //ConjugateGradient optimizationMethod;
    //SteepestDescent optimizationMethod;
    EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
    optimizationMethod.minimize(problem, endCriteria);

}


class FirstDeJong : public CostFunction {
  public:
    Array values(const Array& x) const override {
        return Array(x.size(),value(x));
    }
    Real value(const Array& x) const override { return DotProduct(x, x); }
};

class SecondDeJong : public CostFunction {
  public:
    Array values(const Array& x) const override {
        return Array(x.size(),value(x));
    }
    Real value(const Array& x) const override {
        return  100.0*(x[0]*x[0]-x[1])*(x[0]*x[0]-x[1])
            + (1.0-x[0])*(1.0-x[0]);
    }
};

class ModThirdDeJong : public CostFunction {
  public:
    Array values(const Array& x) const override {
        return Array(x.size(),value(x));
    }
    Real value(const Array& x) const override {
        Real fx = 0.0;
        for (Real i : x) {
            fx += std::floor(i) * std::floor(i);
        }
        return fx;
    }
};

class ModFourthDeJong : public CostFunction {
  public:
    ModFourthDeJong()
    : uniformRng_(MersenneTwisterUniformRng(4711)) {
    }
    Array values(const Array& x) const override {
        return Array(x.size(),value(x));
    }
    Real value(const Array& x) const override {
        Real fx = 0.0;
        for (Size i=0; i<x.size(); ++i) {
            fx += (i+1.0)*pow(x[i],4.0) + uniformRng_.nextReal();
        }
        return fx;
    }
    MersenneTwisterUniformRng uniformRng_;
};

class Griewangk : public CostFunction {
  public:
    Array values(const Array& x) const override {
        return Array(x.size(),value(x));
    }
    Real value(const Array& x) const override {
        Real fx = 0.0;
        for (Real i : x) {
            fx += i * i / 4000.0;
        }
        Real p = 1.0;
        for (Size i=0; i<x.size(); ++i) {
            p *= cos(x[i]/sqrt(i+1.0));
        }
        return fx - p + 1.0;
    }
};


BOOST_AUTO_TEST_CASE(testDifferentialEvolution) {
    BOOST_TEST_MESSAGE("Testing differential evolution...");

    /* Note:
    *
    * The "ModFourthDeJong" doesn't have a well defined optimum because
    * of its noisy part. It just has to be <= 15 in our example.
    * The concrete value might differ for a different input and
    * different random numbers.
    *
    * The "Griewangk" function is an example where the adaptive
    * version of DifferentialEvolution turns out to be more successful.
    */

    DifferentialEvolution::Configuration conf =
        DifferentialEvolution::Configuration()
        .withStepsizeWeight(0.4)
        .withBounds()
        .withCrossoverProbability(0.35)
        .withPopulationMembers(500)
        .withStrategy(DifferentialEvolution::BestMemberWithJitter)
        .withCrossoverType(DifferentialEvolution::Normal)
        .withAdaptiveCrossover()
        .withSeed(3242);
    DifferentialEvolution deOptim(conf);

    DifferentialEvolution::Configuration conf2 =
        DifferentialEvolution::Configuration()
        .withStepsizeWeight(1.8)
        .withBounds()
        .withCrossoverProbability(0.9)
        .withPopulationMembers(1000)
        .withStrategy(DifferentialEvolution::Rand1SelfadaptiveWithRotation)
        .withCrossoverType(DifferentialEvolution::Normal)
        .withAdaptiveCrossover()
        .withSeed(3242);
    DifferentialEvolution deOptim2(conf2);

    std::vector<DifferentialEvolution > diffEvolOptimisers = {
        deOptim,
        deOptim,
        deOptim,
        deOptim,
        deOptim2
    };

    std::vector<ext::shared_ptr<CostFunction> > costFunctions = {
        ext::shared_ptr<CostFunction>(new FirstDeJong),
        ext::shared_ptr<CostFunction>(new SecondDeJong),
        ext::shared_ptr<CostFunction>(new ModThirdDeJong),
        ext::shared_ptr<CostFunction>(new ModFourthDeJong),
        ext::shared_ptr<CostFunction>(new Griewangk)
    };

    std::vector<BoundaryConstraint> constraints = {
        {-10.0, 10.0},
        {-10.0, 10.0},
        {-10.0, 10.0},
        {-10.0, 10.0},
        {-600.0, 600.0}
    };

    std::vector<Array> initialValues = {
        Array(3, 5.0),
        Array(2, 5.0),
        Array(5, 5.0),
        Array(30, 5.0),
        Array(10, 100.0)
    };

    std::vector<EndCriteria> endCriteria = {
        {100, 10, 1e-10, 1e-8, Null<Real>()},
        {100, 10, 1e-10, 1e-8, Null<Real>()},
        {100, 10, 1e-10, 1e-8, Null<Real>()},
        {500, 100, 1e-10, 1e-8, Null<Real>()},
        {1000, 800, 1e-12, 1e-10, Null<Real>()}
    };

    std::vector<Real> minima = {
        0.0,
        0.0,
        0.0,
        10.9639796558,
        0.0
    };

    for (Size i = 0; i < costFunctions.size(); ++i) {
        Problem problem(*costFunctions[i], constraints[i], initialValues[i]);
        diffEvolOptimisers[i].minimize(problem, endCriteria[i]);

        if (i != 3) {
            // stable
            if (std::fabs(problem.functionValue() - minima[i]) > 1e-8) {
                BOOST_ERROR("costFunction # " << i
                            << "\ncalculated: " << problem.functionValue()
                            << "\nexpected:   " << minima[i]);
            }
        } else {
            // this case is unstable due to randomness; we're good as
            // long as the result is below 15
            if (problem.functionValue() > 15) {
                BOOST_ERROR("costFunction # " << i
                            << "\ncalculated: " << problem.functionValue()
                            << "\nexpected:   " << "less than 15");
            }
        }
    }
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()