1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Marco Bianchetti
Copyright (C) 2007 François du Vignaud
Copyright (C) 2007 Giorgio Facchinetti
Copyright (C) 2012 Ralph Schreyer
Copyright (C) 2012 Mateusz Kapturski
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "preconditions.hpp"
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/optimization/bfgs.hpp>
#include <ql/math/optimization/conjugategradient.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/optimization/costfunction.hpp>
#include <ql/math/optimization/differentialevolution.hpp>
#include <ql/math/optimization/goldstein.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/steepestdescent.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
using std::pow;
using std::cos;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(OptimizersTests)
struct NamedOptimizationMethod {
ext::shared_ptr<OptimizationMethod> optimizationMethod;
std::string name;
};
std::vector<ext::shared_ptr<CostFunction> > costFunctions_;
std::vector<ext::shared_ptr<Constraint> > constraints_;
std::vector<Array> initialValues_;
std::vector<Size> maxIterations_, maxStationaryStateIterations_;
std::vector<Real> rootEpsilons_, functionEpsilons_, gradientNormEpsilons_;
std::vector<ext::shared_ptr<EndCriteria> > endCriterias_;
std::vector<std::vector<NamedOptimizationMethod> > optimizationMethods_;
std::vector<Array> xMinExpected_, yMinExpected_;
class OneDimensionalPolynomialDegreeN : public CostFunction {
public:
explicit OneDimensionalPolynomialDegreeN(const Array& coefficients)
: coefficients_(coefficients),
polynomialDegree_(coefficients.size()-1) {}
Real value(const Array& x) const override {
QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
Real y = 0;
for (Size i=0; i<=polynomialDegree_; ++i)
y += coefficients_[i]*std::pow(x[0],static_cast<int>(i));
return y;
}
Array values(const Array& x) const override {
QL_REQUIRE(x.size()==1,"independent variable must be 1 dimensional");
return Array(1, value(x));
}
private:
const Array coefficients_;
const Size polynomialDegree_;
};
// The goal of this cost function is simply to call another optimization inside
// in order to test nested optimizations
class OptimizationBasedCostFunction : public CostFunction {
public:
Real value(const Array&) const override { return 1.0; }
Array values(const Array&) const override {
// dummy nested optimization
Array coefficients(3, 1.0);
OneDimensionalPolynomialDegreeN oneDimensionalPolynomialDegreeN(coefficients);
NoConstraint constraint;
Array initialValues(1, 100.0);
Problem problem(oneDimensionalPolynomialDegreeN, constraint,
initialValues);
LevenbergMarquardt optimizationMethod;
//Simplex optimizationMethod(0.1);
//ConjugateGradient optimizationMethod;
//SteepestDescent optimizationMethod;
EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
optimizationMethod.minimize(problem, endCriteria);
// return dummy result
return Array(1, 0);
}
};
enum OptimizationMethodType {simplex,
levenbergMarquardt,
levenbergMarquardt2,
conjugateGradient,
conjugateGradient_goldstein,
steepestDescent,
steepestDescent_goldstein,
bfgs,
bfgs_goldstein};
std::string optimizationMethodTypeToString(OptimizationMethodType type) {
switch (type) {
case simplex:
return "Simplex";
case levenbergMarquardt:
return "Levenberg Marquardt";
case levenbergMarquardt2:
return "Levenberg Marquardt (cost function's jacbobian)";
case conjugateGradient:
return "Conjugate Gradient";
case steepestDescent:
return "Steepest Descent";
case bfgs:
return "BFGS";
case conjugateGradient_goldstein:
return "Conjugate Gradient (Goldstein line search)";
case steepestDescent_goldstein:
return "Steepest Descent (Goldstein line search)";
case bfgs_goldstein:
return "BFGS (Goldstein line search)";
default:
QL_FAIL("unknown OptimizationMethod type");
}
}
ext::shared_ptr<OptimizationMethod> makeOptimizationMethod(
OptimizationMethodType optimizationMethodType,
Real simplexLambda,
Real levenbergMarquardtEpsfcn,
Real levenbergMarquardtXtol,
Real levenbergMarquardtGtol) {
switch (optimizationMethodType) {
case simplex:
return ext::shared_ptr<OptimizationMethod>(
new Simplex(simplexLambda));
case levenbergMarquardt:
return ext::shared_ptr<OptimizationMethod>(
new LevenbergMarquardt(levenbergMarquardtEpsfcn,
levenbergMarquardtXtol,
levenbergMarquardtGtol));
case levenbergMarquardt2:
return ext::shared_ptr<OptimizationMethod>(
new LevenbergMarquardt(levenbergMarquardtEpsfcn,
levenbergMarquardtXtol,
levenbergMarquardtGtol,
true));
case conjugateGradient:
return ext::shared_ptr<OptimizationMethod>(new ConjugateGradient);
case steepestDescent:
return ext::shared_ptr<OptimizationMethod>(new SteepestDescent);
case bfgs:
return ext::shared_ptr<OptimizationMethod>(new BFGS);
case conjugateGradient_goldstein:
return ext::shared_ptr<OptimizationMethod>(new ConjugateGradient(ext::make_shared<GoldsteinLineSearch>()));
case steepestDescent_goldstein:
return ext::shared_ptr<OptimizationMethod>(new SteepestDescent(ext::make_shared<GoldsteinLineSearch>()));
case bfgs_goldstein:
return ext::shared_ptr<OptimizationMethod>(new BFGS(ext::make_shared<GoldsteinLineSearch>()));
default:
QL_FAIL("unknown OptimizationMethod type");
}
}
std::vector<NamedOptimizationMethod> makeOptimizationMethods(
const std::vector<OptimizationMethodType>& optimizationMethodTypes,
Real simplexLambda,
Real levenbergMarquardtEpsfcn,
Real levenbergMarquardtXtol,
Real levenbergMarquardtGtol) {
std::vector<NamedOptimizationMethod> results;
for (auto optimizationMethodType : optimizationMethodTypes) {
NamedOptimizationMethod namedOptimizationMethod;
namedOptimizationMethod.optimizationMethod = makeOptimizationMethod(
optimizationMethodType, simplexLambda, levenbergMarquardtEpsfcn,
levenbergMarquardtXtol, levenbergMarquardtGtol);
namedOptimizationMethod.name = optimizationMethodTypeToString(optimizationMethodType);
results.push_back(namedOptimizationMethod);
}
return results;
}
Real maxDifference(const Array& a, const Array& b) {
Array diff = a-b;
Real maxDiff = 0.0;
for (Real i : diff)
maxDiff = std::max(maxDiff, std::fabs(i));
return maxDiff;
}
// Set up, for each cost function, all the ingredients for optimization:
// constraint, initial guess, end criteria, optimization methods.
void setup() {
// Cost function n. 1: 1D polynomial of degree 2 (parabolic function y=a*x^2+b*x+c)
const Real a = 1; // required a > 0
const Real b = 1;
const Real c = 1;
Array coefficients(3);
coefficients[0]= c;
coefficients[1]= b;
coefficients[2]= a;
costFunctions_.push_back(ext::shared_ptr<CostFunction>(
new OneDimensionalPolynomialDegreeN(coefficients)));
// Set constraint for optimizers: unconstrained problem
constraints_.push_back(ext::shared_ptr<Constraint>(new NoConstraint()));
// Set initial guess for optimizer
Array initialValue(1);
initialValue[0] = -100;
initialValues_.push_back(initialValue);
// Set end criteria for optimizer
maxIterations_.push_back(10000); // maxIterations
maxStationaryStateIterations_.push_back(100); // MaxStationaryStateIterations
rootEpsilons_.push_back(1e-8); // rootEpsilon
functionEpsilons_.push_back(1e-8); // functionEpsilon
gradientNormEpsilons_.push_back(1e-8); // gradientNormEpsilon
endCriterias_.push_back(ext::make_shared<EndCriteria>(
maxIterations_.back(), maxStationaryStateIterations_.back(),
rootEpsilons_.back(), functionEpsilons_.back(),
gradientNormEpsilons_.back()));
// Set optimization methods for optimizer
std::vector<OptimizationMethodType> optimizationMethodTypes = {
simplex, levenbergMarquardt, levenbergMarquardt2, conjugateGradient,
bfgs //, steepestDescent
};
Real simplexLambda = 0.1; // characteristic search length for simplex
Real levenbergMarquardtEpsfcn = 1.0e-8; // parameters specific for Levenberg-Marquardt
Real levenbergMarquardtXtol = 1.0e-8; //
Real levenbergMarquardtGtol = 1.0e-8; //
optimizationMethods_.push_back(makeOptimizationMethods(
optimizationMethodTypes,
simplexLambda, levenbergMarquardtEpsfcn, levenbergMarquardtXtol,
levenbergMarquardtGtol));
// Set expected results for optimizer
Array xMinExpected(1),yMinExpected(1);
xMinExpected[0] = -b/(2.0*a);
yMinExpected[0] = -(b*b-4.0*a*c)/(4.0*a);
xMinExpected_.push_back(xMinExpected);
yMinExpected_.push_back(yMinExpected);
}
BOOST_AUTO_TEST_CASE(test) {
BOOST_TEST_MESSAGE("Testing optimizers...");
setup();
// Loop over problems (currently there is only 1 problem)
for (Size i=0; i<costFunctions_.size(); ++i) {
Problem problem(*costFunctions_[i], *constraints_[i],
initialValues_[i]);
Array initialValues = problem.currentValue();
// Loop over optimizers
for (Size j=0; j<(optimizationMethods_[i]).size(); ++j) {
Real rootEpsilon = endCriterias_[i]->rootEpsilon();
Size endCriteriaTests = 1;
// Loop over rootEpsilon
for (Size k=0; k<endCriteriaTests; ++k) {
problem.setCurrentValue(initialValues);
EndCriteria endCriteria(
endCriterias_[i]->maxIterations(),
endCriterias_[i]->maxStationaryStateIterations(),
rootEpsilon,
endCriterias_[i]->functionEpsilon(),
endCriterias_[i]->gradientNormEpsilon());
rootEpsilon *= .1;
EndCriteria::Type endCriteriaResult =
optimizationMethods_[i][j].optimizationMethod->minimize(
problem, endCriteria);
Array xMinCalculated = problem.currentValue();
Array yMinCalculated = problem.values(xMinCalculated);
// Check optimization results vs known solution
bool completed;
switch (endCriteriaResult) {
case EndCriteria::None:
case EndCriteria::MaxIterations:
case EndCriteria::Unknown:
completed = false;
break;
default:
completed = true;
}
Real xError = maxDifference(xMinCalculated,xMinExpected_[i]);
Real yError = maxDifference(yMinCalculated,yMinExpected_[i]);
bool correct = (xError <= endCriteria.rootEpsilon() ||
yError <= endCriteria.functionEpsilon());
if ((!completed) || (!correct))
BOOST_ERROR("costFunction # = " << i <<
"\nOptimizer: " <<
optimizationMethods_[i][j].name <<
"\n function evaluations: " <<
problem.functionEvaluation() <<
"\n gradient evaluations: " <<
problem.gradientEvaluation() <<
"\n x expected: " <<
xMinExpected_[i] <<
"\n x calculated: " <<
std::setprecision(9) << xMinCalculated <<
"\n x difference: " <<
xMinExpected_[i]- xMinCalculated <<
"\n rootEpsilon: " <<
std::setprecision(9) <<
endCriteria.rootEpsilon() <<
"\n y expected: " <<
yMinExpected_[i] <<
"\n y calculated: " <<
std::setprecision(9) << yMinCalculated <<
"\n y difference: " <<
yMinExpected_[i]- yMinCalculated <<
"\n functionEpsilon: " <<
std::setprecision(9) <<
endCriteria.functionEpsilon() <<
"\n endCriteriaResult: " <<
endCriteriaResult);
}
}
}
}
BOOST_AUTO_TEST_CASE(nestedOptimizationTest) {
BOOST_TEST_MESSAGE("Testing nested optimizations...");
OptimizationBasedCostFunction optimizationBasedCostFunction;
NoConstraint constraint;
Array initialValues(1, 0.0);
Problem problem(optimizationBasedCostFunction, constraint,
initialValues);
LevenbergMarquardt optimizationMethod;
//Simplex optimizationMethod(0.1);
//ConjugateGradient optimizationMethod;
//SteepestDescent optimizationMethod;
EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5);
optimizationMethod.minimize(problem, endCriteria);
}
class FirstDeJong : public CostFunction {
public:
Array values(const Array& x) const override {
return Array(x.size(),value(x));
}
Real value(const Array& x) const override { return DotProduct(x, x); }
};
class SecondDeJong : public CostFunction {
public:
Array values(const Array& x) const override {
return Array(x.size(),value(x));
}
Real value(const Array& x) const override {
return 100.0*(x[0]*x[0]-x[1])*(x[0]*x[0]-x[1])
+ (1.0-x[0])*(1.0-x[0]);
}
};
class ModThirdDeJong : public CostFunction {
public:
Array values(const Array& x) const override {
return Array(x.size(),value(x));
}
Real value(const Array& x) const override {
Real fx = 0.0;
for (Real i : x) {
fx += std::floor(i) * std::floor(i);
}
return fx;
}
};
class ModFourthDeJong : public CostFunction {
public:
ModFourthDeJong()
: uniformRng_(MersenneTwisterUniformRng(4711)) {
}
Array values(const Array& x) const override {
return Array(x.size(),value(x));
}
Real value(const Array& x) const override {
Real fx = 0.0;
for (Size i=0; i<x.size(); ++i) {
fx += (i+1.0)*pow(x[i],4.0) + uniformRng_.nextReal();
}
return fx;
}
MersenneTwisterUniformRng uniformRng_;
};
class Griewangk : public CostFunction {
public:
Array values(const Array& x) const override {
return Array(x.size(),value(x));
}
Real value(const Array& x) const override {
Real fx = 0.0;
for (Real i : x) {
fx += i * i / 4000.0;
}
Real p = 1.0;
for (Size i=0; i<x.size(); ++i) {
p *= cos(x[i]/sqrt(i+1.0));
}
return fx - p + 1.0;
}
};
BOOST_AUTO_TEST_CASE(testDifferentialEvolution) {
BOOST_TEST_MESSAGE("Testing differential evolution...");
/* Note:
*
* The "ModFourthDeJong" doesn't have a well defined optimum because
* of its noisy part. It just has to be <= 15 in our example.
* The concrete value might differ for a different input and
* different random numbers.
*
* The "Griewangk" function is an example where the adaptive
* version of DifferentialEvolution turns out to be more successful.
*/
DifferentialEvolution::Configuration conf =
DifferentialEvolution::Configuration()
.withStepsizeWeight(0.4)
.withBounds()
.withCrossoverProbability(0.35)
.withPopulationMembers(500)
.withStrategy(DifferentialEvolution::BestMemberWithJitter)
.withCrossoverType(DifferentialEvolution::Normal)
.withAdaptiveCrossover()
.withSeed(3242);
DifferentialEvolution deOptim(conf);
DifferentialEvolution::Configuration conf2 =
DifferentialEvolution::Configuration()
.withStepsizeWeight(1.8)
.withBounds()
.withCrossoverProbability(0.9)
.withPopulationMembers(1000)
.withStrategy(DifferentialEvolution::Rand1SelfadaptiveWithRotation)
.withCrossoverType(DifferentialEvolution::Normal)
.withAdaptiveCrossover()
.withSeed(3242);
DifferentialEvolution deOptim2(conf2);
std::vector<DifferentialEvolution > diffEvolOptimisers = {
deOptim,
deOptim,
deOptim,
deOptim,
deOptim2
};
std::vector<ext::shared_ptr<CostFunction> > costFunctions = {
ext::shared_ptr<CostFunction>(new FirstDeJong),
ext::shared_ptr<CostFunction>(new SecondDeJong),
ext::shared_ptr<CostFunction>(new ModThirdDeJong),
ext::shared_ptr<CostFunction>(new ModFourthDeJong),
ext::shared_ptr<CostFunction>(new Griewangk)
};
std::vector<BoundaryConstraint> constraints = {
{-10.0, 10.0},
{-10.0, 10.0},
{-10.0, 10.0},
{-10.0, 10.0},
{-600.0, 600.0}
};
std::vector<Array> initialValues = {
Array(3, 5.0),
Array(2, 5.0),
Array(5, 5.0),
Array(30, 5.0),
Array(10, 100.0)
};
std::vector<EndCriteria> endCriteria = {
{100, 10, 1e-10, 1e-8, Null<Real>()},
{100, 10, 1e-10, 1e-8, Null<Real>()},
{100, 10, 1e-10, 1e-8, Null<Real>()},
{500, 100, 1e-10, 1e-8, Null<Real>()},
{1000, 800, 1e-12, 1e-10, Null<Real>()}
};
std::vector<Real> minima = {
0.0,
0.0,
0.0,
10.9639796558,
0.0
};
for (Size i = 0; i < costFunctions.size(); ++i) {
Problem problem(*costFunctions[i], constraints[i], initialValues[i]);
diffEvolOptimisers[i].minimize(problem, endCriteria[i]);
if (i != 3) {
// stable
if (std::fabs(problem.functionValue() - minima[i]) > 1e-8) {
BOOST_ERROR("costFunction # " << i
<< "\ncalculated: " << problem.functionValue()
<< "\nexpected: " << minima[i]);
}
} else {
// this case is unstable due to randomness; we're good as
// long as the result is below 15
if (problem.functionValue() > 15) {
BOOST_ERROR("costFunction # " << i
<< "\ncalculated: " << problem.functionValue()
<< "\nexpected: " << "less than 15");
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|