File: rngtraits.cpp

package info (click to toggle)
quantlib 1.39-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,264 kB
  • sloc: cpp: 396,561; makefile: 6,539; python: 272; sh: 154; lisp: 86
file content (133 lines) | stat: -rw-r--r-- 4,535 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004 StatPro Italia srl
 Copyright (C) 2004 Walter Penschke

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/randomnumbers/rngtraits.hpp>
#include <ql/math/randomnumbers/ranluxuniformrng.hpp>
#include <ql/math/comparison.hpp>

using namespace QuantLib;
using namespace boost::unit_test_framework;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(RngTraitsTests)

BOOST_AUTO_TEST_CASE(testGaussian) {

    BOOST_TEST_MESSAGE("Testing Gaussian pseudo-random number generation...");

    PseudoRandom::rsg_type rsg =
        PseudoRandom::make_sequence_generator(100, 1234);

    const std::vector<Real>& values = rsg.nextSequence().value;
    Real sum = 0.0;
    for (Real value : values)
        sum += value;

    Real stored = 4.09916;
    Real tolerance = 1.0e-5;
    if (std::fabs(sum - stored) > tolerance)
        BOOST_FAIL("the sum of the samples does not match the stored value\n"
                   << "    calculated: " << sum << "\n"
                   << "    expected:   " << stored);
}

BOOST_AUTO_TEST_CASE(testDefaultPoisson) {

    BOOST_TEST_MESSAGE("Testing Poisson pseudo-random number generation...");

    PoissonPseudoRandom::icInstance =
        ext::shared_ptr<InverseCumulativePoisson>();
    PoissonPseudoRandom::rsg_type rsg =
        PoissonPseudoRandom::make_sequence_generator(100, 1234);

    const std::vector<Real>& values = rsg.nextSequence().value;
    Real sum = 0.0;
    for (Real value : values)
        sum += value;

    Real stored = 108.0;
    if (!close(sum, stored))
        BOOST_FAIL("the sum of the samples does not match the stored value\n"
                   << "    calculated: " << sum << "\n"
                   << "    expected:   " << stored);
}

BOOST_AUTO_TEST_CASE(testCustomPoisson) {

    BOOST_TEST_MESSAGE("Testing custom Poisson pseudo-random number generation...");

    PoissonPseudoRandom::icInstance =
        ext::make_shared<InverseCumulativePoisson>(
                                           4.0);
    PoissonPseudoRandom::rsg_type rsg =
        PoissonPseudoRandom::make_sequence_generator(100, 1234);

    const std::vector<Real>& values = rsg.nextSequence().value;
    Real sum = 0.0;
    for (Real value : values)
        sum += value;

    Real stored = 409.0;
    if (!close(sum, stored))
        BOOST_FAIL("the sum of the samples does not match the stored value\n"
                   << "    calculated: " << sum << "\n"
                   << "    expected:   " << stored);
}

BOOST_AUTO_TEST_CASE(testRanLux) {
    BOOST_TEST_MESSAGE("Testing known RanLux sequence...");

    Ranlux3UniformRng ranlux3(2938723U);
    Ranlux4UniformRng ranlux4(4390109U);

    const Real ranlux3_expected[] = {
        0.307448851544538826, 0.666313657894363587, 0.698528013702823358,
        0.0217381272445322793,0.862964516238161394, 0.909193419106014034,
        0.674484308686746914, 0.849607570377191479, 0.054626078713596371,
        0.416474163715683687
    };

    const Real ranlux4_expected[] = {
        0.222209169374078641, 0.420181950405986271, 0.0302156663005135329,
        0.0836259809475237148,0.480549766594993599, 0.723472021829124401,
        0.905819507194266293,  0.54072519936540786, 0.445908421479817463,
        0.651084788437518824
    };

    for (Size i=0; i < 10010; ++i) {
        ranlux3.next();
        ranlux4.next();
    }

    for (Size i =0; i < 10; ++i) {
        if (!close_enough(ranlux3.next().value, ranlux3_expected[i]))
            BOOST_FAIL("failed to reproduce ranlux3 numbers...");

        if (!close_enough(ranlux4.next().value, ranlux4_expected[i]))
            BOOST_FAIL("failed to reproduce ranlux4 numbers...");
    }
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()