1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 RiskMap srl
Copyright (C) 2012 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/solvers1d/bisection.hpp>
#include <ql/math/solvers1d/falseposition.hpp>
#include <ql/math/solvers1d/ridder.hpp>
#include <ql/math/solvers1d/secant.hpp>
#include <ql/math/solvers1d/newton.hpp>
#include <ql/math/solvers1d/newtonsafe.hpp>
#include <ql/math/solvers1d/halley.hpp>
#include <ql/math/solvers1d/finitedifferencenewtonsafe.hpp>
using namespace QuantLib;
using namespace boost::unit_test_framework;
BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)
BOOST_AUTO_TEST_SUITE(Solver1DTests)
class F1 {
public:
Real operator()(Real x) const { return x*x-1.0; }
Real derivative(Real x) const { return 2.0*x; }
Real secondDerivative(Real x) const { return 2.0;}
};
class F2 {
public:
Real operator()(Real x) const { return 1.0-x*x; }
Real derivative(Real x) const { return -2.0*x; }
Real secondDerivative(Real x) const { return -2.0;}
};
class F3 {
public:
Real operator()(Real x) const { return std::atan(x-1); }
Real derivative(Real x) const { return 1.0 / (1.0+(x-1.0)*(x-1.0)); }
Real secondDerivative(Real x) const {
const Real u = x-1.0;
return -2*u/((1.0+u*u)*(1.0+u*u));
}
};
template <class S, class F>
void test_not_bracketed(const S& solver, const std::string& name,
const F& f, Real guess) {
Real accuracy[] = { 1.0e-4, 1.0e-6, 1.0e-8 };
Real expected = 1.0;
for (Real& i : accuracy) {
Real root = solver.solve(f, i, guess, 0.1);
if (std::fabs(root - expected) > i) {
BOOST_FAIL(name << " solver (not bracketed):\n"
<< " expected: " << expected << "\n"
<< " calculated: " << root << "\n"
<< " accuracy: " << i);
}
}
}
template <class S, class F>
void test_bracketed(const S& solver, const std::string& name,
const F& f, Real guess) {
Real accuracy[] = { 1.0e-4, 1.0e-6, 1.0e-8 };
Real expected = 1.0;
for (Real& i : accuracy) {
// guess on the left side of the root, increasing function
Real root = solver.solve(f, i, guess, 0.0, 2.0);
if (std::fabs(root - expected) > i) {
BOOST_FAIL(name << " solver (bracketed):\n"
<< " expected: " << expected << "\n"
<< " calculated: " << root << "\n"
<< " accuracy: " << i);
}
}
}
class Probe {
public:
Probe(Real& result, Real offset)
: result_(result), previous_(result), offset_(offset) {}
Real operator()(Real x) const {
result_ = x;
return previous_ + offset_ - x*x;
}
Real derivative(Real x) const { return 2.0*x; }
Real secondDerivative(Real x) const { return 2.0; }
private:
Real& result_;
Real previous_;
Real offset_;
};
template <class S>
void test_last_call_with_root(const S& solver, const std::string& name,
bool bracketed, Real accuracy) {
Real mins[] = { 3.0, 2.25, 1.5, 1.0 };
Real maxs[] = { 7.0, 5.75, 4.5, 3.0 };
Real steps[] = { 0.2, 0.2, 0.1, 0.1 };
Real offsets[] = { 25.0, 11.0, 5.0, 1.0 };
Real guesses[] = { 4.5, 4.5, 2.5, 2.5 };
//Real expected[] = { 5.0, 4.0, 3.0, 2.0 };
Real argument = 0.0;
Real result;
for (Size i=0; i<4; ++i) {
if (bracketed) {
result = solver.solve(Probe(argument, offsets[i]), accuracy,
guesses[i], mins[i], maxs[i]);
} else {
result = solver.solve(Probe(argument, offsets[i]), accuracy,
guesses[i], steps[i]);
}
Real error = std::fabs(result-argument);
// the solver should have called the function with
// the very same value it's returning. But the internal
// 80bit length of the x87 FPU register might lead to
// a very small glitch when compiled with -mfpmath=387 on gcc
if (error > 2*QL_EPSILON) {
BOOST_FAIL(name << " solver ("
<< (bracketed ? "" : "not ")
<< "bracketed):\n"
<< " index: " << i << "\n"
<< " expected: " << result << "\n"
<< " calculated: " << argument << "\n"
<< " error: " << error);
}
}
}
template <class S>
void test_solver(const S& solver, const std::string& name, Real accuracy) {
// guess on the left side of the root, increasing function
test_not_bracketed(solver, name, F1(), 0.5);
test_bracketed(solver, name, F1(), 0.5);
// guess on the right side of the root, increasing function
test_not_bracketed(solver, name, F1(), 1.5);
test_bracketed(solver, name, F1(), 1.5);
// guess on the left side of the root, decreasing function
test_not_bracketed(solver, name, F2(), 0.5);
test_bracketed(solver, name, F2(), 0.5);
// guess on the right side of the root, decreasing function
test_not_bracketed(solver, name, F2(), 1.5);
test_bracketed(solver, name, F2(), 1.5);
// situation where bisection is used in the finite difference
// newton solver as the first step and where the initial
// guess is equal to the next estimate (which causes an infinite
// derivative if we do not handle this case with special care)
test_not_bracketed(solver, name, F3(), 1.00001);
// check that the last function call is made with the root value
if(accuracy != Null<Real>()) {
test_last_call_with_root(solver, name, false, accuracy);
test_last_call_with_root(solver, name, true, accuracy);
}
}
BOOST_AUTO_TEST_CASE(testBrent) {
BOOST_TEST_MESSAGE("Testing Brent solver...");
test_solver(Brent(), "Brent", 1.0e-6);
}
BOOST_AUTO_TEST_CASE(testBisection) {
BOOST_TEST_MESSAGE("Testing bisection solver...");
test_solver(Bisection(), "Bisection", 1.0e-6);
}
BOOST_AUTO_TEST_CASE(testFalsePosition) {
BOOST_TEST_MESSAGE("Testing false-position solver...");
test_solver(FalsePosition(), "FalsePosition", 1.0e-6);
}
BOOST_AUTO_TEST_CASE(testNewton) {
BOOST_TEST_MESSAGE("Testing Newton solver...");
test_solver(Newton(), "Newton", 1.0e-12);
}
BOOST_AUTO_TEST_CASE(testNewtonSafe) {
BOOST_TEST_MESSAGE("Testing Newton-safe solver...");
test_solver(NewtonSafe(), "NewtonSafe", 1.0e-9);
}
BOOST_AUTO_TEST_CASE(testFiniteDifferenceNewtonSafe) {
BOOST_TEST_MESSAGE("Testing finite-difference Newton-safe solver...");
test_solver(FiniteDifferenceNewtonSafe(), "FiniteDifferenceNewtonSafe", Null<Real>());
}
BOOST_AUTO_TEST_CASE(testRidder) {
BOOST_TEST_MESSAGE("Testing Ridder solver...");
test_solver(Ridder(), "Ridder", 1.0e-6);
}
BOOST_AUTO_TEST_CASE(testSecant) {
BOOST_TEST_MESSAGE("Testing secant solver...");
test_solver(Secant(), "Secant", 1.0e-6);
}
BOOST_AUTO_TEST_CASE(testHalley) {
BOOST_TEST_MESSAGE("Testing Halley solver...");
test_solver(Halley(), "Halley", 1.0e-6);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
|