1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
|
/*
Copyright (C) 2006 Giorgio Facchinetti
Copyright (C) 2006 Mario Pucci
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file conundrumpricer.hpp
\brief
*/
#include <ql/cashflows/conundrumpricer.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/math/solvers1d/newton.hpp>
#include <ql/termstructures/volatility/smilesection.hpp>
#include <ql/cashflows/cmscoupon.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/indexes/swapindex.hpp>
#include <ql/indexes/interestrateindex.hpp>
#include <ql/time/schedule.hpp>
#include <ql/instruments/vanillaswap.hpp>
#include <boost/bind.hpp>
namespace QuantLib {
//===========================================================================//
// BlackVanillaOptionPricer //
//===========================================================================//
BlackVanillaOptionPricer::BlackVanillaOptionPricer(
Rate forwardValue,
Date expiryDate,
const Period& swapTenor,
const boost::shared_ptr<SwaptionVolatilityStructure>& volatilityStructure) :
forwardValue_(forwardValue), expiryDate_(expiryDate), swapTenor_(swapTenor),
volatilityStructure_(volatilityStructure),
smile_(volatilityStructure_->smileSection(expiryDate_, swapTenor_)) {
}
Real BlackVanillaOptionPricer::operator()(Real strike,
Option::Type optionType,
Real deflator) const {
const Real variance = smile_->variance(strike);
return deflator * blackFormula(optionType, strike,
forwardValue_, std::sqrt(variance));
}
//===========================================================================//
// HaganPricer //
//===========================================================================//
HaganPricer::HaganPricer(
const Handle<SwaptionVolatilityStructure>& swaptionVol,
GFunctionFactory::YieldCurveModel modelOfYieldCurve,
const Handle<Quote>& meanReversion)
: CmsCouponPricer(swaptionVol),
modelOfYieldCurve_(modelOfYieldCurve),
cutoffForCaplet_(2), cutoffForFloorlet_(0),
meanReversion_(meanReversion) {
registerWith(meanReversion_);
}
void HaganPricer::initialize(const FloatingRateCoupon& coupon){
coupon_ = dynamic_cast<const CmsCoupon*>(&coupon);
QL_REQUIRE(coupon_, "CMS coupon needed");
gearing_ = coupon_->gearing();
spread_ = coupon_->spread();
Time accrualPeriod = coupon_->accrualPeriod();
QL_REQUIRE(accrualPeriod != 0.0, "null accrual period");
fixingDate_ = coupon_->fixingDate();
paymentDate_ = coupon_->date();
const boost::shared_ptr<SwapIndex>& swapIndex = coupon_->swapIndex();
rateCurve_ = *(swapIndex->forwardingTermStructure());
Date today = Settings::instance().evaluationDate();
if(paymentDate_ > today)
discount_ = rateCurve_->discount(paymentDate_);
else discount_= 1.;
spreadLegValue_ = spread_ * accrualPeriod * discount_;
if (fixingDate_ > today){
swapTenor_ = swapIndex->tenor();
boost::shared_ptr<VanillaSwap> swap = swapIndex->underlyingSwap(fixingDate_);
swapRateValue_ = swap->fairRate();
static const Spread bp = 1.0e-4;
annuity_ = std::fabs(swap->fixedLegBPS()/bp);
Size q = swapIndex->fixedLegTenor().frequency();
const Schedule& schedule = swap->fixedSchedule();
const DayCounter& dc = swapIndex->dayCounter();
//const DayCounter dc = coupon.dayCounter();
Time startTime = dc.yearFraction(rateCurve_->referenceDate(),
swap->startDate());
Time swapFirstPaymentTime =
dc.yearFraction(rateCurve_->referenceDate(), schedule.date(1));
Time paymentTime = dc.yearFraction(rateCurve_->referenceDate(),
paymentDate_);
Real delta = (paymentTime-startTime) / (swapFirstPaymentTime-startTime);
switch (modelOfYieldCurve_) {
case GFunctionFactory::Standard:
gFunction_ = GFunctionFactory::newGFunctionStandard(q, delta, swapTenor_.length());
break;
case GFunctionFactory::ExactYield:
gFunction_ = GFunctionFactory::newGFunctionExactYield(*coupon_);
break;
case GFunctionFactory::ParallelShifts: {
Handle<Quote> nullMeanReversionQuote(boost::shared_ptr<Quote>(new SimpleQuote(0.0)));
gFunction_ = GFunctionFactory::newGFunctionWithShifts(*coupon_, nullMeanReversionQuote);
}
break;
case GFunctionFactory::NonParallelShifts:
gFunction_ = GFunctionFactory::newGFunctionWithShifts(*coupon_, meanReversion_);
break;
default:
QL_FAIL("unknown/illegal gFunction type");
}
vanillaOptionPricer_= boost::shared_ptr<VanillaOptionPricer>(new
BlackVanillaOptionPricer(swapRateValue_, fixingDate_, swapTenor_,
*swaptionVolatility()));
}
}
Real HaganPricer::meanReversion() const { return meanReversion_->value();}
Rate HaganPricer::swapletRate() const {
return swapletPrice()/(coupon_->accrualPeriod()*discount_);
}
Real HaganPricer::capletPrice(Rate effectiveCap) const {
// caplet is equivalent to call option on fixing
Date today = Settings::instance().evaluationDate();
if (fixingDate_ <= today) {
// the fixing is determined
const Rate Rs =
std::max(coupon_->swapIndex()->fixing(fixingDate_)-effectiveCap, 0.);
Rate price = (gearing_*Rs)*(coupon_->accrualPeriod()*discount_);
return price;
} else {
Real cutoffNearZero = 1e-10;
Real capletPrice = 0;
if (effectiveCap < cutoffForCaplet_) {
Rate effectiveStrikeForMax = std::max(effectiveCap,cutoffNearZero);
capletPrice = optionletPrice(Option::Call, effectiveStrikeForMax);
}
return gearing_ * capletPrice;
}
}
Rate HaganPricer::capletRate(Rate effectiveCap) const {
return capletPrice(effectiveCap)/(coupon_->accrualPeriod()*discount_);
}
Real HaganPricer::floorletPrice(Rate effectiveFloor) const {
// floorlet is equivalent to put option on fixing
Date today = Settings::instance().evaluationDate();
if (fixingDate_ <= today) {
// the fixing is determined
const Rate Rs =
std::max(effectiveFloor-coupon_->swapIndex()->fixing(fixingDate_),0.);
Rate price = (gearing_*Rs)*(coupon_->accrualPeriod()*discount_);
return price;
} else {
Real cutoffNearZero = 1e-10;
Real floorletPrice = 0;
if (effectiveFloor > cutoffForFloorlet_){
Rate effectiveStrikeForMin = std::max(effectiveFloor,cutoffNearZero);
floorletPrice=optionletPrice(Option::Put, effectiveStrikeForMin);
}
return gearing_ * floorletPrice;
}
}
Rate HaganPricer::floorletRate(Rate effectiveFloor) const {
return floorletPrice(effectiveFloor)/(coupon_->accrualPeriod()*discount_);
}
//===========================================================================//
// NumericHaganPricer //
//===========================================================================//
namespace {
class VariableChange {
public:
VariableChange(boost::function<Real (Real)>& f,
Real a, Real b, Size k)
: a_(a), width_(b-a), f_(f), k_(k) {}
Real value(Real x) const {
Real newVar;
Real temp = width_;
for (Size i = 1; i < k_ ; ++i) {
temp *= x;
}
newVar = a_ + x* temp;
return f_(newVar) * k_* temp;
}
private:
Real a_, width_;
boost::function<Real (Real)> f_;
Size k_;
};
class Spy {
public:
Spy(boost::function<Real (Real)> f) : f_(f) {}
Real value(Real x){
abscissas.push_back(x);
Real value = f_(x);
functionValues.push_back(value);
return value;
}
private:
boost::function<Real (Real)> f_;
std::vector<Real> abscissas;
std::vector<Real> functionValues;
};
}
NumericHaganPricer::NumericHaganPricer(
const Handle<SwaptionVolatilityStructure>& swaptionVol,
GFunctionFactory::YieldCurveModel modelOfYieldCurve,
const Handle<Quote>& meanReversion,
Real lowerLimit,
Real upperLimit,
Real precision)
: HaganPricer(swaptionVol, modelOfYieldCurve, meanReversion),
upperLimit_(upperLimit),
lowerLimit_(lowerLimit),
requiredStdDeviations_(8),
precision_(precision),
refiningIntegrationTolerance_(.0001){
}
Real NumericHaganPricer::integrate(Real a,
Real b, const ConundrumIntegrand& integrand) const {
double result =.0;
//double abserr =.0;
//double alpha = 1.0;
//double epsabs = precision_;
//double epsrel = 1.0; // we are interested only in absolute precision
//size_t neval =0;
// we use the non adaptive algorithm only for semi infinite interval
if (a>0){
// we estimate the actual boudary by testing integrand values
Real upperBoundary = 2*a;
while(integrand(upperBoundary)>precision_)
upperBoundary *=2.0;
// sometimes b < a because of a wrong estimation of b based on stdev
if (b > a)
upperBoundary = std::min(upperBoundary, b);
boost::function<Real (Real)> f;
GaussKronrodNonAdaptive
gaussKronrodNonAdaptive(precision_, 1000000, 1.0);
// if the integration intervall is wide enough we use the
// following change variable x -> a + (b-a)*(t/(a-b))^3
if (upperBoundary > 2*a){
Size k = 3;
boost::function<Real (Real)> temp = boost::ref(integrand);
VariableChange variableChange(temp, a, upperBoundary, k);
f = boost::bind(&VariableChange::value, &variableChange, _1);
result = gaussKronrodNonAdaptive(f, .0, 1.0);
} else {
f = boost::ref(integrand);
result = gaussKronrodNonAdaptive(f, a, upperBoundary);
}
// if the expected precision has not been reached we use the old algorithm
if (!gaussKronrodNonAdaptive.integrationSuccess()){
const GaussKronrodAdaptive integrator(precision_, 1000000);
result = integrator(integrand,a , b);
}
} else { // if a < b we use the old algorithm
const GaussKronrodAdaptive integrator(precision_, 1000000);
result = integrator(integrand,a , b);
}
return result;
}
Real NumericHaganPricer::optionletPrice(
Option::Type optionType, Real strike) const {
boost::shared_ptr<ConundrumIntegrand> integrand(new
ConundrumIntegrand(vanillaOptionPricer_, rateCurve_, gFunction_,
fixingDate_, paymentDate_, annuity_,
swapRateValue_, strike, optionType));
stdDeviationsForUpperLimit_= requiredStdDeviations_;
Real a, b, integralValue;
if (optionType==Option::Call) {
upperLimit_ = resetUpperLimit(stdDeviationsForUpperLimit_);
// while(upperLimit_ <= strike){
// stdDeviationsForUpperLimit_ += 1.;
// upperLimit_ = resetUpperLimit(stdDeviationsForUpperLimit_);
// }
integralValue = integrate(strike, upperLimit_, *integrand);
//refineIntegration(integralValue, *integrand);
} else {
a = std::min(strike, lowerLimit_);
b = strike;
integralValue = integrate(a, b, *integrand);
}
Real dFdK = integrand->firstDerivativeOfF(strike);
Real swaptionPrice =
(*vanillaOptionPricer_)(strike, optionType, annuity_);
// v. HAGAN, Conundrums..., formule 2.17a, 2.18a
return coupon_->accrualPeriod() * (discount_/annuity_) *
((1 + dFdK) * swaptionPrice + optionType*integralValue);
}
Real NumericHaganPricer::swapletPrice() const {
Date today = Settings::instance().evaluationDate();
if (fixingDate_ <= today) {
// the fixing is determined
const Rate Rs = coupon_->swapIndex()->fixing(fixingDate_);
Rate price = (gearing_*Rs + spread_)*(coupon_->accrualPeriod()*discount_);
return price;
} else {
Real atmCapletPrice = optionletPrice(Option::Call, swapRateValue_);
Real atmFloorletPrice = optionletPrice(Option::Put, swapRateValue_);
return gearing_ *(coupon_->accrualPeriod()* discount_ * swapRateValue_
+ atmCapletPrice - atmFloorletPrice)
+ spreadLegValue_;
}
}
Real NumericHaganPricer::refineIntegration(Real integralValue,
const ConundrumIntegrand& integrand) const {
Real percDiff = 1000.;
while(std::fabs(percDiff) < refiningIntegrationTolerance_){
stdDeviationsForUpperLimit_ += 1.;
Real lowerLimit = upperLimit_;
upperLimit_ = resetUpperLimit(stdDeviationsForUpperLimit_);
Real diff = integrate(lowerLimit, upperLimit_,integrand);
percDiff = diff/integralValue;
integralValue += diff;
}
return integralValue;
}
Real NumericHaganPricer::resetUpperLimit(
Real stdDeviationsForUpperLimit) const {
//return 1.0;
Real variance =
swaptionVolatility()->blackVariance(fixingDate_,swapTenor_,swapRateValue_);
return swapRateValue_ *
std::exp(stdDeviationsForUpperLimit*std::sqrt(variance));
}
//===========================================================================//
// ConundrumIntegrand //
//===========================================================================//
NumericHaganPricer::ConundrumIntegrand::ConundrumIntegrand(
const boost::shared_ptr<VanillaOptionPricer>& o,
const boost::shared_ptr<YieldTermStructure>&,
const boost::shared_ptr<GFunction>& gFunction,
Date fixingDate,
Date paymentDate,
Real annuity,
Real forwardValue,
Real strike,
Option::Type optionType)
: vanillaOptionPricer_(o), forwardValue_(forwardValue), annuity_(annuity),
fixingDate_(fixingDate), paymentDate_(paymentDate), strike_(strike),
optionType_(optionType),
gFunction_(gFunction) {}
void NumericHaganPricer::ConundrumIntegrand::setStrike(Real strike) {
strike_ = strike;
}
Real NumericHaganPricer::ConundrumIntegrand::strike() const {
return strike_;
}
Real NumericHaganPricer::ConundrumIntegrand::annuity() const {
return annuity_;
}
Date NumericHaganPricer::ConundrumIntegrand::fixingDate() const {
return fixingDate_;
}
Real NumericHaganPricer::ConundrumIntegrand::functionF (const Real x) const {
const Real Gx = gFunction_->operator()(x);
const Real GR = gFunction_->operator()(forwardValue_);
return (x - strike_) * (Gx/GR - 1.0);
}
Real NumericHaganPricer::ConundrumIntegrand::firstDerivativeOfF (const Real x) const {
const Real Gx = gFunction_->operator()(x);
const Real GR = gFunction_->operator()(forwardValue_) ;
const Real G1 = gFunction_->firstDerivative(x);
return (Gx/GR - 1.0) + G1/GR * (x - strike_);
}
Real NumericHaganPricer::ConundrumIntegrand::secondDerivativeOfF (const Real x) const {
const Real GR = gFunction_->operator()(forwardValue_) ;
const Real G1 = gFunction_->firstDerivative(x);
const Real G2 = gFunction_->secondDerivative(x);
return 2.0 * G1/GR + (x - strike_) * G2/GR;
}
Real NumericHaganPricer::ConundrumIntegrand::operator()(Real x) const {
const Real option = (*vanillaOptionPricer_)(x, optionType_, annuity_);
return option * secondDerivativeOfF(x);
}
//===========================================================================//
// AnalyticHaganPricer //
//===========================================================================//
AnalyticHaganPricer::AnalyticHaganPricer(
const Handle<SwaptionVolatilityStructure>& swaptionVol,
GFunctionFactory::YieldCurveModel modelOfYieldCurve,
const Handle<Quote>& meanReversion)
: HaganPricer(swaptionVol, modelOfYieldCurve, meanReversion)
{ }
//Hagan, 3.5b, 3.5c
Real AnalyticHaganPricer::optionletPrice(Option::Type optionType,
Real strike) const {
Real variance = swaptionVolatility()->blackVariance(fixingDate_,
swapTenor_,
swapRateValue_);
Real firstDerivativeOfGAtForwardValue = gFunction_->firstDerivative(
swapRateValue_);
Real price = 0;
Real CK = (*vanillaOptionPricer_)(strike, optionType, annuity_);
price += (discount_/annuity_)*CK;
const Real sqrtSigma2T = std::sqrt(variance);
const Real lnRoverK = std::log(swapRateValue_/strike);
const Real d32 = (lnRoverK+1.5*variance)/sqrtSigma2T;
const Real d12 = (lnRoverK+.5*variance)/sqrtSigma2T;
const Real dminus12 = (lnRoverK-.5*variance)/sqrtSigma2T;
CumulativeNormalDistribution cumulativeOfNormal;
const Real N32 = cumulativeOfNormal(optionType*d32);
const Real N12 = cumulativeOfNormal(optionType*d12);
const Real Nminus12 = cumulativeOfNormal(optionType*dminus12);
price += optionType * firstDerivativeOfGAtForwardValue * annuity_ *
swapRateValue_ * (swapRateValue_ * std::exp(variance) * N32-
(swapRateValue_+strike) * N12 + strike * Nminus12);
price *= coupon_->accrualPeriod();
return price;
}
//Hagan 3.4c
Real AnalyticHaganPricer::swapletPrice() const {
Date today = Settings::instance().evaluationDate();
if (fixingDate_ <= today) {
// the fixing is determined
const Rate Rs = coupon_->swapIndex()->fixing(fixingDate_);
Rate price = (gearing_*Rs + spread_)*(coupon_->accrualPeriod()*discount_);
return price;
} else {
Real variance(swaptionVolatility()->blackVariance(fixingDate_,
swapTenor_,
swapRateValue_));
Real firstDerivativeOfGAtForwardValue(gFunction_->firstDerivative(
swapRateValue_));
Real price = 0;
price += discount_*swapRateValue_;
price += firstDerivativeOfGAtForwardValue*annuity_*swapRateValue_*
swapRateValue_*(std::exp(variance)-1.);
return gearing_ * price * coupon_->accrualPeriod() + spreadLegValue_;
}
}
//===========================================================================//
// GFunctionStandard //
//===========================================================================//
Real GFunctionFactory::GFunctionStandard::operator()(Real x) {
Real n = static_cast<Real>(swapLength_) * q_;
return x / std::pow((1.0 + x/q_), delta_) * 1.0 /
(1.0 - 1.0 / std::pow((1.0 + x/q_), n));
}
Real GFunctionFactory::GFunctionStandard::firstDerivative(Real x) {
Real n = static_cast<Real>(swapLength_) * q_;
Real a = 1.0 + x / q_;
Real AA = a - delta_/q_ * x;
Real B = std::pow(a,(n - delta_ - 1.0))/(std::pow(a,n) - 1.0);
Real secNum = n * x * std::pow(a,(n-1.0));
Real secDen = q_ * std::pow(a, delta_) * (std::pow(a, n) - 1.0) *
(std::pow(a, n) - 1.0);
Real sec = secNum / secDen;
return AA * B - sec;
}
Real GFunctionFactory::GFunctionStandard::secondDerivative(Real x) {
Real n = static_cast<Real>(swapLength_) * q_;
Real a = 1.0 + x/q_;
Real AA = a - delta_/q_ * x;
Real A1 = (1.0 - delta_)/q_;
Real B = std::pow(a,(n - delta_ - 1.0))/(std::pow(a,n) - 1.0);
Real Num = (1.0 + delta_ - n) * std::pow(a, (n-delta_-2.0)) -
(1.0 + delta_) * std::pow(a, (2.0*n-delta_-2.0));
Real Den = (std::pow(a, n) - 1.0) * (std::pow(a, n) - 1.0);
Real B1 = 1.0 / q_ * Num / Den;
Real C = x / std::pow(a, delta_);
Real C1 = (std::pow(a, delta_)
- delta_ /q_ * x * std::pow(a, (delta_ - 1.0))) / std::pow(a, 2 * delta_);
Real D = std::pow(a, (n-1.0))/ ((std::pow(a, n) - 1.0) * (std::pow(a, n) - 1.0));
Real D1 = ((n - 1.0) * std::pow(a, (n-2.0)) * (std::pow(a, n) - 1.0)
- 2 * n * std::pow(a, (2 * (n-1.0))))
/ (q_ * (std::pow(a, n) - 1.0)*(std::pow(a, n) - 1.0)*(std::pow(a, n) - 1.0));
return A1 * B + AA * B1 - n/q_ * (C1 * D + C * D1);
}
boost::shared_ptr<GFunction> GFunctionFactory::newGFunctionStandard(Size q,
Real delta, Size swapLength) {
return boost::shared_ptr<GFunction>(new GFunctionStandard(q, delta, swapLength));
}
//===========================================================================//
// GFunctionExactYield //
//===========================================================================//
GFunctionFactory::GFunctionExactYield::GFunctionExactYield(const CmsCoupon& coupon){
const boost::shared_ptr<SwapIndex>& swapIndex = coupon.swapIndex();
const boost::shared_ptr<VanillaSwap>& swap =
swapIndex->underlyingSwap(coupon.fixingDate());
const Schedule& schedule = swap->fixedSchedule();
Handle<YieldTermStructure> rateCurve =
swapIndex->forwardingTermStructure();
const DayCounter& dc = swapIndex->dayCounter();
Real swapStartTime = dc.yearFraction(rateCurve->referenceDate(),
schedule.startDate());
Real swapFirstPaymentTime = dc.yearFraction(rateCurve->referenceDate(),
schedule.date(1));
Real paymentTime = dc.yearFraction(rateCurve->referenceDate(),
coupon.date());
delta_ = (paymentTime-swapStartTime) / (swapFirstPaymentTime-swapStartTime);
const Leg& fixedLeg(swap->fixedLeg());
Size n = fixedLeg.size();
accruals_.reserve(n);
for (Size i=0; i<n; ++i) {
boost::shared_ptr<Coupon> coupon =
boost::dynamic_pointer_cast<Coupon>(fixedLeg[i]);
accruals_.push_back(coupon->accrualPeriod());
}
}
Real GFunctionFactory::GFunctionExactYield::operator()(Real x) {
Real product = 1.;
for(Size i=0; i<accruals_.size(); i++) {
product *= 1./(1.+ accruals_[i]*x);
}
return x*std::pow(1.+ accruals_[0]*x,-delta_)*(1./(1.-product));
}
Real GFunctionFactory::GFunctionExactYield::firstDerivative(Real x) {
Real c = -1.;
Real derC = 0.;
std::vector<Real> b;
b.reserve(accruals_.size());
for (Size i=0; i<accruals_.size(); i++) {
Real temp = 1.0/(1.0+ accruals_[i]*x);
b.push_back(temp);
c *= temp;
derC += accruals_[i]*temp;
}
c += 1.;
c = 1./c;
derC *= (c-c*c);
return -delta_*accruals_[0]*std::pow(b[0],delta_+1.)*x*c+
std::pow(b[0],delta_)*c+ std::pow(b[0],delta_)*x*derC;
//Real dx = 1.0e-8;
//return (operator()(x+dx)-operator()(x-dx))/(2.0*dx);
}
Real GFunctionFactory::GFunctionExactYield::secondDerivative(Real x) {
Real c = -1.;
Real sum = 0.;
Real sumOfSquare = 0.;
std::vector<Real> b;
b.reserve(accruals_.size());
for(Size i=0; i<accruals_.size(); i++) {
Real temp = 1.0/(1.0+ accruals_[i]*x);
b.push_back(temp);
c *= temp;
sum += accruals_[i]*temp;
sumOfSquare += std::pow(accruals_[i]*temp, 2.0);
}
c += 1.;
c = 1./c;
Real derC =sum*(c-c*c);
return (-delta_*accruals_[0]*std::pow(b[0],delta_+1.)*c+ std::pow(b[0],delta_)*derC)*
(-delta_*accruals_[0]*b[0]*x + 1. + x*(1.-c)*sum)+
std::pow(b[0],delta_)*c*(delta_*std::pow(accruals_[0]*b[0],2.)*x - delta_* accruals_[0]*b[0] -
x*derC*sum + (1.-c)*sum - x*(1.-c)*sumOfSquare);
//Real dx = 1.0e-8;
//return (firstDerivative(x+dx)-firstDerivative(x-dx))/(2.0*dx);
}
boost::shared_ptr<GFunction> GFunctionFactory::newGFunctionExactYield(const CmsCoupon& coupon) {
return boost::shared_ptr<GFunction>(new GFunctionExactYield(coupon));
}
//===========================================================================//
// GFunctionWithShifts //
//===========================================================================//
GFunctionFactory::GFunctionWithShifts::GFunctionWithShifts(
const CmsCoupon& coupon,
const Handle<Quote>& meanReversion)
: meanReversion_(meanReversion), calibratedShift_(0.03),
tmpRs_(10000000.0), accuracy_( 1.0e-14) {
const boost::shared_ptr<SwapIndex>& swapIndex = coupon.swapIndex();
const boost::shared_ptr<VanillaSwap>& swap = swapIndex->underlyingSwap(coupon.fixingDate());
swapRateValue_ = swap->fairRate();
objectiveFunction_ = boost::shared_ptr<ObjectiveFunction>(new ObjectiveFunction(*this, swapRateValue_));
const Schedule& schedule = swap->fixedSchedule();
Handle<YieldTermStructure> rateCurve =
swapIndex->forwardingTermStructure();
const DayCounter& dc = swapIndex->dayCounter();
swapStartTime_ = dc.yearFraction(rateCurve->referenceDate(),
schedule.startDate());
discountAtStart_ = rateCurve->discount(schedule.startDate());
Real paymentTime = dc.yearFraction(rateCurve->referenceDate(),
coupon.date());
shapedPaymentTime_ = shapeOfShift(paymentTime);
const Leg& fixedLeg(swap->fixedLeg());
Size n = fixedLeg.size();
accruals_.reserve(n);
shapedSwapPaymentTimes_.reserve(n);
swapPaymentDiscounts_.reserve(n);
for(Size i=0; i<n; ++i) {
boost::shared_ptr<Coupon> coupon =
boost::dynamic_pointer_cast<Coupon>(fixedLeg[i]);
accruals_.push_back(coupon->accrualPeriod());
const Date paymentDate(coupon->date());
const double swapPaymentTime(dc.yearFraction(rateCurve->referenceDate(), paymentDate));
shapedSwapPaymentTimes_.push_back(shapeOfShift(swapPaymentTime));
swapPaymentDiscounts_.push_back(rateCurve->discount(paymentDate));
}
discountRatio_ = swapPaymentDiscounts_.back()/discountAtStart_;
}
Real GFunctionFactory::GFunctionWithShifts::operator()(Real Rs) {
const Real calibratedShift = calibrationOfShift(Rs);
return Rs* functionZ(calibratedShift);
}
Real GFunctionFactory::GFunctionWithShifts::functionZ(Real x) {
return std::exp(-shapedPaymentTime_*x)
/ (1.-discountRatio_*std::exp(-shapedSwapPaymentTimes_.back()*x));
}
Real GFunctionFactory::GFunctionWithShifts::derRs_derX(Real x) {
Real sqrtDenominator = 0;
Real derSqrtDenominator = 0;
for(Size i=0; i<accruals_.size(); i++) {
sqrtDenominator += accruals_[i]*swapPaymentDiscounts_[i]
*std::exp(-shapedSwapPaymentTimes_[i]*x);
derSqrtDenominator -= shapedSwapPaymentTimes_[i]* accruals_[i]*swapPaymentDiscounts_[i]
*std::exp(-shapedSwapPaymentTimes_[i]*x);
}
const Real denominator = sqrtDenominator* sqrtDenominator;
Real numerator = 0;
numerator += shapedSwapPaymentTimes_.back()* swapPaymentDiscounts_.back()*
std::exp(-shapedSwapPaymentTimes_.back()*x)*sqrtDenominator;
numerator -= (discountAtStart_ - swapPaymentDiscounts_.back()* std::exp(-shapedSwapPaymentTimes_.back()*x))*
derSqrtDenominator;
QL_REQUIRE(denominator!=0, "GFunctionWithShifts::derRs_derX: denominator == 0");
return numerator/denominator;
}
Real GFunctionFactory::GFunctionWithShifts::der2Rs_derX2(Real x) {
Real denOfRfunztion = 0.;
Real derDenOfRfunztion = 0.;
Real der2DenOfRfunztion = 0.;
for(Size i=0; i<accruals_.size(); i++) {
denOfRfunztion += accruals_[i]*swapPaymentDiscounts_[i]
*std::exp(-shapedSwapPaymentTimes_[i]*x);
derDenOfRfunztion -= shapedSwapPaymentTimes_[i]* accruals_[i]*swapPaymentDiscounts_[i]
*std::exp(-shapedSwapPaymentTimes_[i]*x);
der2DenOfRfunztion+= shapedSwapPaymentTimes_[i]*shapedSwapPaymentTimes_[i]* accruals_[i]*
swapPaymentDiscounts_[i]*std::exp(-shapedSwapPaymentTimes_[i]*x);
}
const Real denominator = std::pow(denOfRfunztion, 4);
Real numOfDerR = 0;
numOfDerR += shapedSwapPaymentTimes_.back()* swapPaymentDiscounts_.back()*
std::exp(-shapedSwapPaymentTimes_.back()*x)*denOfRfunztion;
numOfDerR -= (discountAtStart_ - swapPaymentDiscounts_.back()* std::exp(-shapedSwapPaymentTimes_.back()*x))*
derDenOfRfunztion;
const Real denOfDerR = std::pow(denOfRfunztion,2);
Real derNumOfDerR = 0.;
derNumOfDerR -= shapedSwapPaymentTimes_.back()*shapedSwapPaymentTimes_.back()* swapPaymentDiscounts_.back()*
std::exp(-shapedSwapPaymentTimes_.back()*x)*denOfRfunztion;
derNumOfDerR += shapedSwapPaymentTimes_.back()* swapPaymentDiscounts_.back()*
std::exp(-shapedSwapPaymentTimes_.back()*x)*derDenOfRfunztion;
derNumOfDerR -= (shapedSwapPaymentTimes_.back()*swapPaymentDiscounts_.back()*
std::exp(-shapedSwapPaymentTimes_.back()*x))* derDenOfRfunztion;
derNumOfDerR -= (discountAtStart_ - swapPaymentDiscounts_.back()* std::exp(-shapedSwapPaymentTimes_.back()*x))*
der2DenOfRfunztion;
const Real derDenOfDerR = 2*denOfRfunztion*derDenOfRfunztion;
const Real numerator = derNumOfDerR*denOfDerR -numOfDerR*derDenOfDerR;
QL_REQUIRE(denominator!=0, "GFunctionWithShifts::der2Rs_derX2: denominator == 0");
return numerator/denominator;
}
Real GFunctionFactory::GFunctionWithShifts::derZ_derX(Real x) {
const Real sqrtDenominator = (1.-discountRatio_*std::exp(-shapedSwapPaymentTimes_.back()*x));
const Real denominator = sqrtDenominator* sqrtDenominator;
QL_REQUIRE(denominator!=0, "GFunctionWithShifts::derZ_derX: denominator == 0");
Real numerator = 0;
numerator -= shapedPaymentTime_* std::exp(-shapedPaymentTime_*x)* sqrtDenominator;
numerator -= shapedSwapPaymentTimes_.back()* std::exp(-shapedPaymentTime_*x)* (1.-sqrtDenominator);
return numerator/denominator;
}
Real GFunctionFactory::GFunctionWithShifts::der2Z_derX2(Real x) {
const Real denOfZfunction = (1.-discountRatio_*std::exp(-shapedSwapPaymentTimes_.back()*x));
const Real derDenOfZfunction = shapedSwapPaymentTimes_.back()*discountRatio_*std::exp(-shapedSwapPaymentTimes_.back()*x);
const Real denominator = std::pow(denOfZfunction, 4);
QL_REQUIRE(denominator!=0, "GFunctionWithShifts::der2Z_derX2: denominator == 0");
Real numOfDerZ = 0;
numOfDerZ -= shapedPaymentTime_* std::exp(-shapedPaymentTime_*x)* denOfZfunction;
numOfDerZ -= shapedSwapPaymentTimes_.back()* std::exp(-shapedPaymentTime_*x)* (1.-denOfZfunction);
const Real denOfDerZ = std::pow(denOfZfunction,2);
const Real derNumOfDerZ = (-shapedPaymentTime_* std::exp(-shapedPaymentTime_*x)*
(-shapedPaymentTime_+(shapedPaymentTime_*discountRatio_-
shapedSwapPaymentTimes_.back()*discountRatio_)* std::exp(-shapedSwapPaymentTimes_.back()*x))
-shapedSwapPaymentTimes_.back()*std::exp(-shapedPaymentTime_*x)*
(shapedPaymentTime_*discountRatio_- shapedSwapPaymentTimes_.back()*discountRatio_)*
std::exp(-shapedSwapPaymentTimes_.back()*x));
const Real derDenOfDerZ = 2*denOfZfunction*derDenOfZfunction;
const Real numerator = derNumOfDerZ*denOfDerZ -numOfDerZ*derDenOfDerZ;
return numerator/denominator;
}
Real GFunctionFactory::GFunctionWithShifts::firstDerivative(Real Rs) {
//Real dRs = 1.0e-8;
//return (operator()(Rs+dRs)-operator()(Rs-dRs))/(2.0*dRs);
const Real calibratedShift = calibrationOfShift(Rs);
return functionZ(calibratedShift) + Rs * derZ_derX(calibratedShift)/derRs_derX(calibratedShift);
}
Real GFunctionFactory::GFunctionWithShifts::secondDerivative(Real Rs) {
//Real dRs = 1.0e-8;
//return (firstDerivative(Rs+dRs)-firstDerivative(Rs-dRs))/(2.0*dRs);
const Real calibratedShift = calibrationOfShift(Rs);
return 2.*derZ_derX(calibratedShift)/derRs_derX(calibratedShift) +
Rs * der2Z_derX2(calibratedShift)/std::pow(derRs_derX(calibratedShift),2.)-
Rs * derZ_derX(calibratedShift)*der2Rs_derX2(calibratedShift)/
std::pow(derRs_derX(calibratedShift),3.);
}
Real GFunctionFactory::GFunctionWithShifts::ObjectiveFunction::operator ()(const Real& x) const {
Real result = 0;
derivative_ = 0;
for(Size i=0; i<o_.accruals_.size(); i++) {
Real temp = o_.accruals_[i]*o_.swapPaymentDiscounts_[i]
*std::exp(-o_.shapedSwapPaymentTimes_[i]*x);
result += temp;
derivative_ -= o_.shapedSwapPaymentTimes_[i] * temp;
}
result *= Rs_;
derivative_ *= Rs_;
Real temp = o_.swapPaymentDiscounts_.back()
* std::exp(-o_.shapedSwapPaymentTimes_.back()*x);
result += temp-o_.discountAtStart_;
derivative_ -= o_.shapedSwapPaymentTimes_.back()*temp;
return result;
}
Real GFunctionFactory::GFunctionWithShifts::ObjectiveFunction::derivative(const Real&) const {
return derivative_;
}
void GFunctionFactory::GFunctionWithShifts::ObjectiveFunction::setSwapRateValue(Real x) {
Rs_ = x;
}
Real GFunctionFactory::GFunctionWithShifts::shapeOfShift(Real s) const {
const Real x(s-swapStartTime_);
Real meanReversion = meanReversion_->value();
if(meanReversion>0) {
return (1.-std::exp(-meanReversion*x))/meanReversion;
}
else {
return x;
}
}
Real GFunctionFactory::GFunctionWithShifts::calibrationOfShift(Real Rs){
if(Rs!=tmpRs_){
Real initialGuess, N=0, D=0;
for(Size i=0; i<accruals_.size(); i++) {
N+=accruals_[i]*swapPaymentDiscounts_[i];
D+=accruals_[i]*swapPaymentDiscounts_[i]*shapedSwapPaymentTimes_[i];
}
N *= Rs;
D *= Rs;
N += accruals_.back() * swapPaymentDiscounts_.back()
- objectiveFunction_->gFunctionWithShifts().discountAtStart_;
D += accruals_.back() * swapPaymentDiscounts_.back()*
shapedSwapPaymentTimes_.back();
initialGuess = N/D;
objectiveFunction_->setSwapRateValue(Rs);
Newton solver;
solver.setMaxEvaluations(1000);
// these boundaries migth not be big enough if the volatility
// of big swap rate values is too high . In this case the G function
// is not even integrable, so better to fix the vol than increasing
// these values
const Real lower = -20, upper = 20.;
try {
calibratedShift_ = solver.solve(*objectiveFunction_, accuracy_,
std::max( std::min(initialGuess, upper*.99), lower*.99),
lower, upper);
} catch (std::exception& e) {
QL_FAIL("meanReversion: " << meanReversion_->value() <<
", swapRateValue: " << swapRateValue_ <<
", swapStartTime: " << swapStartTime_ <<
", shapedPaymentTime: " << shapedPaymentTime_ <<
"\n error message: " << e.what());
}
tmpRs_=Rs;
}
return calibratedShift_;
}
boost::shared_ptr<GFunction> GFunctionFactory::newGFunctionWithShifts(const CmsCoupon& coupon,
const Handle<Quote>& meanReversion) {
return boost::shared_ptr<GFunction>(new GFunctionWithShifts(coupon, meanReversion));
}
}
|