1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2013 Yue Tian
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/barrieroption/analyticdoublebarrierengine.hpp>
#include <ql/instruments/europeanoption.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>
#include <ql/exercise.hpp>
#include <boost/make_shared.hpp>
namespace QuantLib {
AnalyticDoubleBarrierEngine::AnalyticDoubleBarrierEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
int series)
: process_(process), series_(series) {
registerWith(process_);
}
void AnalyticDoubleBarrierEngine::calculate() const {
boost::shared_ptr<PlainVanillaPayoff> payoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-plain payoff given");
QL_REQUIRE(payoff->strike()>0.0,
"strike must be positive");
Real K = payoff->strike();
Real S = process_->x0();
QL_REQUIRE(S >= 0.0, "negative or null underlying given");
QL_REQUIRE(!triggered(S), "barrier touched");
std::vector<Barrier::Type> barrierType = arguments_.barrierType;
Real L = arguments_.barrier[0];
Real H = arguments_.barrier[1];
Real K_up = std::min(H, K);
Real K_down = std::max(L, K);
Time T = residualTime();
Real rd = riskFreeRate();
Real dd = riskFreeDiscount();
Real rf = dividendYield();
Real df = dividendDiscount();
Real vol = volatility();
Real mu = rd - rf - vol*vol/2.0;
Real sgn = mu > 0 ? 1.0 :(mu < 0 ? -1.0: 0.0);
//rebate
Real R_L = arguments_.rebate[0];
Real R_H = arguments_.rebate[1];
//european option
EuropeanOption europeanOption(payoff, arguments_.exercise);
boost::shared_ptr<PricingEngine> analyticEuropeanEngine =
boost::make_shared<AnalyticEuropeanEngine>(process_);
europeanOption.setPricingEngine(analyticEuropeanEngine);
Real european = europeanOption.NPV();
Real barrierOut = 0;
Real rebateIn = 0;
for(int n = -series_; n < series_; n++){
Real d1 = D(S/H*std::pow(L/H, 2.0*n), vol*vol+mu, vol, T);
Real d2 = d1 - vol*std::sqrt(T);
Real g1 = D(H/S*std::pow(L/H, 2.0*n - 1.0), vol*vol+mu, vol, T);
Real g2 = g1 - vol*std::sqrt(T);
Real h1 = D(S/H*std::pow(L/H, 2.0*n - 1.0), vol*vol+mu, vol, T);
Real h2 = h1 - vol*std::sqrt(T);
Real k1 = D(L/S*std::pow(L/H, 2.0*n - 1.0), vol*vol+mu, vol, T);
Real k2 = k1 - vol*std::sqrt(T);
Real d1_down = D(S/K_down*std::pow(L/H, 2.0*n), vol*vol+mu, vol, T);
Real d2_down = d1_down - vol*std::sqrt(T);
Real d1_up = D(S/K_up*std::pow(L/H, 2.0*n), vol*vol+mu, vol, T);
Real d2_up = d1_up - vol*std::sqrt(T);
Real k1_down = D((H*H)/(K_down*S)*std::pow(L/H, 2.0*n), vol*vol+mu, vol, T);
Real k2_down = k1_down - vol*std::sqrt(T);
Real k1_up = D((H*H)/(K_up*S)*std::pow(L/H, 2.0*n), vol*vol+mu, vol, T);
Real k2_up = k1_up - vol*std::sqrt(T);
if( payoff->optionType() == Option::Call) {
barrierOut += std::pow(L/H, 2.0 * n * mu/(vol*vol))*
(df*S*std::pow(L/H, 2.0*n)*(f_(d1_down)-f_(d1))
-dd*K*(f_(d2_down)-f_(d2))
-df*std::pow(L/H, 2.0*n)*H*H/S*std::pow(H/S, 2.0*mu/(vol*vol))*(f_(k1_down)-f_(k1))
+dd*K*std::pow(H/S,2.0*mu/(vol*vol))*(f_(k2_down)-f_(k2)));
}
else if(payoff->optionType() == Option::Put){
barrierOut += std::pow(L/H, 2.0 * n * mu/(vol*vol))*
(dd*K*(f_(h2)-f_(d2_up))
-df*S*std::pow(L/H, 2.0*n)*(f_(h1)-f_(d1_up))
-dd*K*std::pow(H/S,2.0*mu/(vol*vol))*(f_(g2)-f_(k2_up))
+df*std::pow(L/H, 2.0*n)*H*H/S*std::pow(H/S, 2.0*mu/(vol*vol))*(f_(g1)-f_(k1_up)));
}
else {
QL_FAIL("option type not recognized");
}
Real v1 = D(H/S*std::pow(H/L, 2.0*n), -mu, vol, T);
Real v2 = D(H/S*std::pow(H/L, 2.0*n), mu, vol, T);
Real v3 = D(S/L*std::pow(H/L, 2.0*n), -mu, vol, T);
Real v4 = D(S/L*std::pow(H/L, 2.0*n), mu, vol, T);
rebateIn += dd * R_H * sgn * (std::pow(L/H, 2.0*n*mu/(vol*vol)) * f_(sgn * v1) - std::pow(H/S, 2.0*mu/(vol*vol)) * f_(-sgn * v2))
+ dd * R_L * sgn * (std::pow(L/S, 2.0*mu/(vol*vol)) * f_(-sgn * v3) - std::pow(H/L, 2.0*n*mu/(vol*vol)) * f_(sgn * v4));
}
//rebate paid at maturity
if(barrierType[0] == Barrier::DownOut){
results_.value = barrierOut ;
results_.additionalResults["vanilla"] = european;
results_.additionalResults["barrierOut"] = barrierOut;
results_.additionalResults["barrierIn"] = european - barrierOut;
}
else{
results_.value = barrierOut;
results_.additionalResults["vanilla"] = european;
results_.additionalResults["barrierOut"] = barrierOut;
results_.additionalResults["barrierIn"] = european - barrierOut;
}
}
Real AnalyticDoubleBarrierEngine::underlying() const {
return process_->x0();
}
Real AnalyticDoubleBarrierEngine::strike() const {
boost::shared_ptr<PlainVanillaPayoff> payoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-plain payoff given");
return payoff->strike();
}
Time AnalyticDoubleBarrierEngine::residualTime() const {
return process_->time(arguments_.exercise->lastDate());
}
Volatility AnalyticDoubleBarrierEngine::volatility() const {
return process_->blackVolatility()->blackVol(residualTime(), strike());
}
Real AnalyticDoubleBarrierEngine::stdDeviation() const {
return volatility() * std::sqrt(residualTime());
}
Rate AnalyticDoubleBarrierEngine::riskFreeRate() const {
return process_->riskFreeRate()->zeroRate(residualTime(), Continuous,
NoFrequency);
}
DiscountFactor AnalyticDoubleBarrierEngine::riskFreeDiscount() const {
return process_->riskFreeRate()->discount(residualTime());
}
Rate AnalyticDoubleBarrierEngine::dividendYield() const {
return process_->dividendYield()->zeroRate(residualTime(),
Continuous, NoFrequency);
}
DiscountFactor AnalyticDoubleBarrierEngine::dividendDiscount() const {
return process_->dividendYield()->discount(residualTime());
}
Real AnalyticDoubleBarrierEngine::D(Real X, Real lambda, Real sigma, Real T) const {
return (std::log(X) + lambda * T)/(sigma * std::sqrt(T));
}
}
|