1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Dimitri Reiswich
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/compoundoption/analyticcompoundoptionengine.hpp>
namespace QuantLib {
AnalyticCompoundOptionEngine::AnalyticCompoundOptionEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process)
: process_(process){
registerWith(process_);
}
void AnalyticCompoundOptionEngine::calculate() const {
QL_REQUIRE(strikeDaughter()>0.0,
"Daughter strike must be positive");
QL_REQUIRE(strikeMother()>0.0,
"Mother strike must be positive");
QL_REQUIRE(spot() >= 0.0, "negative or null underlying given");
/* Solver Setup ***************************************************/
Date helpDate(process_->riskFreeRate()->referenceDate());
Date helpMaturity=helpDate+(maturityDaughter()-maturityMother())*Days;
Real vol =process_->blackVolatility()->blackVol(helpMaturity,
strikeDaughter());
Time helpTimeToMat=process_->time(helpMaturity);
vol=vol*std::sqrt(helpTimeToMat);
DiscountFactor dividendDiscount =
process_->dividendYield()->discount(helpMaturity);
DiscountFactor riskFreeDiscount =
process_->riskFreeRate()->discount(helpMaturity);
boost::shared_ptr<ImpliedSpotHelper> f(
new ImpliedSpotHelper(dividendDiscount, riskFreeDiscount,
vol, payoffDaughter(), strikeMother()));
Brent solver;
solver.setMaxEvaluations(1000);
Real accuracy = 1.0e-6;
Real X=0.0;
Real sSolved=0.0;
sSolved=solver.solve(*f, accuracy, strikeDaughter(), 1.0e-6, strikeDaughter()*1000.0);
X=transformX(sSolved); // transform stock to return as in Wystup's book
/* Solver Setup Finished*****************************************/
Real phi=typeDaughter(); // -1 or 1
Real w=typeMother(); // -1 or 1
Real rho=std::sqrt(residualTimeMother()/residualTimeDaughter());
BivariateCumulativeNormalDistributionDr78 N2(w*rho) ;
DiscountFactor ddD=dividendDiscountDaughter();
DiscountFactor rdD=riskFreeDiscountDaughter();
//DiscountFactor ddM=dividendDiscountMother();
DiscountFactor rdM=riskFreeDiscountMother();
Real XmSM=X-stdDeviationMother();
Real S=spot();
Real dP=dPlus();
Real dPT12=dPlusTau12(sSolved);
Real vD=volatilityDaughter();
Real dM=dMinus();
Real strD=strikeDaughter();
Real strM=strikeMother();
Real rTM=residualTimeMother();
Real rTD=residualTimeDaughter();
Real rD=riskFreeRateDaughter();
Real dD=dividendRateDaughter();
Real tempRes=0.0;
Real tempDelta=0.0;
Real tempGamma=0.0;
Real tempVega=0.0;
Real tempTheta=0.0;
Real N2XmSM=N2(-phi*w*XmSM,phi*dP);
Real N2X=N2(-phi*w*X,phi*dM);
Real NeX=N_(-phi*w*e(X));
Real NX=N_(-phi*w*X);
Real NT12=N_(phi*dPT12);
Real ndP=n_(dP);
Real nXm=n_(XmSM);
Real invMTime=1/std::sqrt(rTM);
Real invDTime=1/std::sqrt(rTD);
tempRes=phi*w*S*ddD*N2XmSM-phi*w*strD*rdD*N2X-w*strM*rdM*NX;
tempDelta=phi*w*ddD*N2XmSM;
tempGamma=(ddD/(vD*S))*(invMTime*nXm*NT12+w*invDTime*ndP*NeX);
tempVega=ddD*S*((1/invMTime)*nXm*NT12+w*(1/invDTime)*ndP*NeX);
tempTheta+=phi*w*dD*S*ddD*N2XmSM-phi*w*rD*strD*rdD*N2X-w*rD*strM*rdM*NX;
tempTheta-=0.5*vD*S*ddD*(invMTime*nXm*NT12+w*invDTime*ndP*NeX);
results_.value=tempRes;
results_.delta=tempDelta;
results_.gamma=tempGamma;
results_.vega=tempVega;
results_.theta=tempTheta;
}
Real AnalyticCompoundOptionEngine::typeDaughter() const{
// returns -1 or 1 according to put or call
return (Real) payoffDaughter()->optionType();
}
Real AnalyticCompoundOptionEngine::typeMother() const{
return (Real) payoffMother()->optionType();
}
Date AnalyticCompoundOptionEngine::maturityDaughter() const{
return arguments_.exercise->lastDate();
}
Date AnalyticCompoundOptionEngine::maturityMother() const{
return (arguments_.motherOption->exercise())->lastDate();
}
Time AnalyticCompoundOptionEngine::residualTimeDaughter() const{
return process_->time(maturityDaughter());
}
Time AnalyticCompoundOptionEngine::residualTimeMother() const{
return process_->time(maturityMother());
}
Time AnalyticCompoundOptionEngine::residualTimeMotherDaughter() const{
return residualTimeDaughter()-residualTimeMother();
}
Real AnalyticCompoundOptionEngine::volatilityDaughter() const{
return process_->blackVolatility()->blackVol(maturityDaughter(),
strikeDaughter());
}
Real AnalyticCompoundOptionEngine::volatilityMother() const{
return process_->blackVolatility()->blackVol(maturityMother(),
strikeMother());
}
Real AnalyticCompoundOptionEngine::stdDeviationDaughter() const{
return volatilityDaughter()*std::sqrt(residualTimeDaughter());
}
Real AnalyticCompoundOptionEngine::stdDeviationMother() const{
return volatilityMother()*std::sqrt(residualTimeMother());
}
boost::shared_ptr<PlainVanillaPayoff>
AnalyticCompoundOptionEngine::payoffDaughter() const{
boost::shared_ptr<PlainVanillaPayoff> dPayoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(dPayoff, "non-plain payoff given");
return dPayoff;
}
boost::shared_ptr<PlainVanillaPayoff>
AnalyticCompoundOptionEngine::payoffMother() const{
boost::shared_ptr<PlainVanillaPayoff> mPayoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(
(arguments_.motherOption)->payoff());
QL_REQUIRE(mPayoff, "non-plain payoff given");
return mPayoff;
}
Real AnalyticCompoundOptionEngine::strikeMother() const{
return payoffMother()->strike();
}
Real AnalyticCompoundOptionEngine::strikeDaughter() const{
return payoffDaughter()->strike();
}
DiscountFactor AnalyticCompoundOptionEngine::riskFreeDiscountDaughter() const{
return process_->riskFreeRate()->discount(residualTimeDaughter());
}
DiscountFactor AnalyticCompoundOptionEngine::riskFreeDiscountMother() const{
return process_->riskFreeRate()->discount(residualTimeMother());
}
DiscountFactor AnalyticCompoundOptionEngine::riskFreeDiscountMotherDaughter() const{
return process_->riskFreeRate()->discount(residualTimeMotherDaughter());
}
DiscountFactor AnalyticCompoundOptionEngine::dividendDiscountDaughter() const{
return process_->dividendYield()->discount(residualTimeDaughter());
}
DiscountFactor AnalyticCompoundOptionEngine::dividendDiscountMother() const{
return process_->dividendYield()->discount(residualTimeMother());
}
DiscountFactor AnalyticCompoundOptionEngine::dividendDiscountMotherDaughter() const{
return process_->dividendYield()->discount(residualTimeMotherDaughter());
}
Real AnalyticCompoundOptionEngine::dPlus() const{
Real forward = spot() * dividendDiscountDaughter() / riskFreeDiscountDaughter();
Real sd=stdDeviationDaughter();
return std::log(forward/strikeDaughter())/sd+0.5*sd;
}
Real AnalyticCompoundOptionEngine::dMinus() const{
return dPlus()-stdDeviationDaughter();
}
Real AnalyticCompoundOptionEngine::dPlusTau12(Real S) const{
Real forward = S * dividendDiscountMotherDaughter() / riskFreeDiscountMotherDaughter();
Real sd=volatilityDaughter()*std::sqrt(residualTimeMotherDaughter());
return std::log(forward/strikeDaughter())/sd+0.5*sd;
}
Real AnalyticCompoundOptionEngine::spot() const{
return process_->x0();
}
Real AnalyticCompoundOptionEngine::riskFreeRateDaughter() const{
return process_->riskFreeRate()->zeroRate(residualTimeDaughter(),
Continuous,
NoFrequency);
}
Real AnalyticCompoundOptionEngine::dividendRateDaughter() const{
return process_->dividendYield()->zeroRate(residualTimeDaughter(),
Continuous,
NoFrequency);
}
Real AnalyticCompoundOptionEngine::transformX(Real X) const{
Real sd=stdDeviationMother();
Real resX=riskFreeDiscountMother()*X/(spot()*dividendDiscountMother());
resX=resX*std::exp(0.5*sd*sd);
resX=std::log(resX);
return resX/sd;
}
Real AnalyticCompoundOptionEngine::e(Real X) const{
Real rtM=residualTimeMother();
Real rtD=residualTimeDaughter();
return (X*std::sqrt(rtD)+std::sqrt(rtM)*dMinus())/std::sqrt(rtD-rtM);
}
ImpliedSpotHelper::ImpliedSpotHelper(
DiscountFactor dividendDiscount,
DiscountFactor riskFreeDiscount,
Real standardDeviation,
boost::shared_ptr<PlainVanillaPayoff> payoff,
Real strike)
: dividendDiscount_(dividendDiscount), riskFreeDiscount_(riskFreeDiscount),
standardDeviation_(standardDeviation),
strike_(strike),payoff_(payoff){}
Real ImpliedSpotHelper::operator ()(Real spot)const{
Real forwardPrice = spot * dividendDiscount_ / riskFreeDiscount_;
// Should be handled more efficient! Each time the optimizer calls the operator
// a new object is created. Need a Calc function which returns value for a given
// spot.
// Any better solution with current QuantLib architecture?
boost::shared_ptr<BlackCalculator> blackCalc(
new BlackCalculator(payoff_, forwardPrice,
standardDeviation_,riskFreeDiscount_));
return blackCalc->value()-strike_;
}
}
|