1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2013 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/models/gsrprocess.hpp>
namespace QuantLib {
GsrProcess::GsrProcess(const Array ×, const Array &vols,
const Array &reversions, const Real T)
: ForwardMeasureProcess1D(T), times_(times), vols_(vols),
reversions_(reversions), revZero_(reversions.size(), false) {
QL_REQUIRE(times.size() == vols.size() - 1,
"number of volatilities ("
<< vols.size() << ") compared to number of times ("
<< times_.size() << " must be bigger by one");
QL_REQUIRE(times.size() == reversions.size() - 1 ||
reversions.size() == 1,
"number of reversions ("
<< vols.size() << ") compared to number of times ("
<< times_.size() << " must be bigger by one, or exactly "
"1 reversion must be given");
for (int i = 0; i < ((int)times.size()) - 1; i++)
QL_REQUIRE(times[i] < times[i + 1], "times must be increasing ("
<< times[i] << "@" << i
<< " , " << times[i + 1]
<< "@" << i + 1 << ")");
for (int i = 0; i < (int)reversions.size(); i++)
// if (close(reversions[i], 0.0))
if (std::fabs(reversions[i]) < 1E-4)
revZero_[i] = true;
flushCache();
}
Real GsrProcess::x0() const { return 0.0; }
Real GsrProcess::drift(Time t, Real x) const {
QL_REQUIRE(t <= getForwardMeasureTime(),
"t (" << t
<< ") must not be greater than forward measure time ("
<< getForwardMeasureTime() << ")");
return y(t) - G(t, this->getForwardMeasureTime(), x) *
vol(lowerIndex(t)) * vol(lowerIndex(t)) -
rev(lowerIndex(t)) * x;
}
Real GsrProcess::diffusion(Time t, Real) const {
QL_REQUIRE(t <= getForwardMeasureTime(),
"t (" << t
<< ") must not be greater than forward measure time ("
<< getForwardMeasureTime() << ")");
return vol(lowerIndex(t));
}
Real GsrProcess::expectation(Time w, Real xw, Time dt) const {
Real t = w + dt;
QL_REQUIRE(t <= getForwardMeasureTime(),
"t (" << t
<< ") must not be greater than forward measure time ("
<< getForwardMeasureTime() << ")");
return expectationp1(w, xw, dt) + expectationp2(w, dt);
}
void GsrProcess::flushCache() const {
cache1_.clear();
cache2_.clear();
cache3_.clear();
cache4_.clear();
cache5_.clear();
}
Real GsrProcess::expectationp1(Time w, Real xw, Time dt) const {
Real t = w + dt;
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k =
cache1_.find(key);
if (k != cache1_.end())
return xw * (k->second);
// A(w,t)x(w)
Real res2 = 1.0;
for (int i = lowerIndex(w); i <= upperIndex(t) - 1; i++) {
res2 *= exp(-rev(i) * (cappedTime(i + 1, t) - flooredTime(i, w)));
}
cache1_.insert(std::make_pair(key, res2));
return res2 * xw;
}
Real GsrProcess::expectationp2(Time w, Time dt) const {
Real t = w + dt;
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k =
cache2_.find(key);
if (k != cache2_.end())
return k->second;
Real T = getForwardMeasureTime();
Real res = 0.0;
// \int A(s,t)y(s)
for (int k = lowerIndex(w); k <= upperIndex(t) - 1; k++) {
// l<k
for (int l = 0; l <= k - 1; l++) {
Real res2 = 1.0;
// alpha_l
res2 *= revZero(l) ? vol(l) * vol(l) * (time2(l + 1) - time2(l))
: vol(l) * vol(l) / (2.0 * rev(l)) *
(1.0 - exp(-2.0 * rev(l) *
(time2(l + 1) - time2(l))));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res2 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// beta_j (j<k)
for (int j = l + 1; j <= k - 1; j++)
res2 *= exp(-2.0 * rev(j) * (time2(j + 1) - time2(j)));
// zeta_k beta_k
res2 *=
revZero(k)
? 2.0 * time2(k) - flooredTime(k, w) -
cappedTime(k + 1, t) -
2.0 * (time2(k) - cappedTime(k + 1, t))
: (exp(rev(k) * (2.0 * time2(k) - flooredTime(k, w) -
cappedTime(k + 1, t))) -
exp(2.0 * rev(k) *
(time2(k) - cappedTime(k + 1, t)))) /
rev(k);
// add to sum
res += res2;
}
// l=k
Real res2 = 1.0;
// alpha_k zeta_k
res2 *=
revZero(k)
? vol(k) * vol(k) / 4.0 *
(4.0 * pow(cappedTime(k + 1, t) - time2(k), 2.0) -
(pow(flooredTime(k, w) - 2.0 * time2(k) +
cappedTime(k + 1, t),
2.0) +
pow(cappedTime(k + 1, t) - flooredTime(k, w), 2.0)))
: vol(k) * vol(k) / (2.0 * rev(k) * rev(k)) *
(exp(-2.0 * rev(k) *
(cappedTime(k + 1, t) - time2(k))) +
1.0 -
(exp(-rev(k) * (flooredTime(k, w) - 2.0 * time2(k) +
cappedTime(k + 1, t))) +
exp(-rev(k) *
(cappedTime(k + 1, t) - flooredTime(k, w)))));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res2 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// no beta_j in this case ...
res += res2;
}
// int -A(s,t) \sigma^2 G(s,T)
for (int k = lowerIndex(w); k <= upperIndex(t) - 1; k++) {
Real res2 = 0.0;
// l>k
for (int l = k + 1; l <= upperIndex(T) - 1; l++) {
Real res3 = 1.0;
// eta_l
res3 *= revZero(l)
? cappedTime(l + 1, T) - time2(l)
: (1.0 - exp(-rev(l) *
(cappedTime(l + 1, T) - time2(l)))) /
rev(l);
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res3 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// gamma_j (j>k)
for (int j = k + 1; j <= l - 1; j++)
res3 *= exp(-rev(j) * (time2(j + 1) - time2(j)));
// zeta_k gamma_k
res3 *=
revZero(k)
? (cappedTime(k + 1, t) - time2(k + 1) -
(2.0 * flooredTime(k, w) - cappedTime(k + 1, t) -
time2(k + 1))) /
2.0
: (exp(rev(k) * (cappedTime(k + 1, t) - time2(k + 1))) -
exp(rev(k) *
(2.0 * flooredTime(k, w) - cappedTime(k + 1, t) -
time2(k + 1)))) /
(2.0 * rev(k));
// add to sum
res2 += res3;
}
// l=k
Real res3 = 1.0;
// eta_k zeta_k
res3 *=
revZero(k)
? (-pow(cappedTime(k + 1, t) - cappedTime(k + 1, T), 2.0) -
2.0 *
pow(cappedTime(k + 1, t) - flooredTime(k, w), 2.0) +
pow(2.0 * flooredTime(k, w) - cappedTime(k + 1, T) -
cappedTime(k + 1, t),
2.0)) /
4.0
: (2.0 - exp(rev(k) * (cappedTime(k + 1, t) -
cappedTime(k + 1, T))) -
(2.0 * exp(-rev(k) *
(cappedTime(k + 1, t) - flooredTime(k, w))) -
exp(rev(k) *
(2.0 * flooredTime(k, w) - cappedTime(k + 1, T) -
cappedTime(k + 1, t))))) /
(2.0 * rev(k) * rev(k));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++)
res3 *= exp(-rev(i) * (cappedTime(i + 1, t) - time2(i)));
// no gamma_j in this case ...
res2 += res3;
// add to main accumulator
res += -vol(k) * vol(k) * res2;
}
cache2_.insert(std::make_pair(key, res));
return res;
}
Real GsrProcess::stdDeviation(Time t0, Real x0, Time dt) const {
return sqrt(variance(t0, x0, dt));
}
Real GsrProcess::variance(Time w, Real, Time dt) const {
Real t = w + dt;
QL_REQUIRE(t <= getForwardMeasureTime(),
"t (" << t
<< ") must not be greater than forward measure time ("
<< getForwardMeasureTime() << ")");
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k =
cache3_.find(key);
if (k != cache3_.end())
return k->second;
Real res = 0.0;
for (int k = lowerIndex(w); k <= upperIndex(t) - 1; k++) {
Real res2 = vol(k) * vol(k);
// zeta_k^2
res2 *= revZero(k)
? -(flooredTime(k, w) - cappedTime(k + 1, t))
: (1.0 - exp(2.0 * rev(k) * (flooredTime(k, w) -
cappedTime(k + 1, t)))) /
(2.0 * rev(k));
// zeta_i (i>k)
for (int i = k + 1; i <= upperIndex(t) - 1; i++) {
res2 *= exp(-2.0 * rev(i) * (cappedTime(i + 1, t) - time2(i)));
}
res += res2;
}
cache3_.insert(std::make_pair(key, res));
return res;
}
Real GsrProcess::sigma(Time t) const { return vol(lowerIndex(t)); }
Real GsrProcess::reversion(Time t) const { return rev(lowerIndex(t)); }
Real GsrProcess::y(Time t) const {
QL_REQUIRE(t >= 0.0 && t <= getForwardMeasureTime(),
"y(t) should be called with t (" << t << ") in Range [0,"
<< getForwardMeasureTime()
<< "].");
Real key;
key = t;
std::map<Real, Real>::const_iterator k = cache4_.find(key);
if (k != cache4_.end())
return k->second;
Real res = 0.0;
for (int i = 0; i <= upperIndex(t) - 1; i++) {
Real res2 = 1.0;
for (int j = i + 1; j <= upperIndex(t) - 1; j++) {
res2 *= exp(-2.0 * rev(j) * (cappedTime(j + 1, t) - time2(j)));
}
res2 *= revZero(i)
? vol(i) * vol(i) * (cappedTime(i + 1, t) - time2(i))
: (vol(i) * vol(i) / (2.0 * rev(i)) *
(1.0 - exp(-2.0 * rev(i) *
(cappedTime(i + 1, t) - time2(i)))));
res += res2;
}
cache4_.insert(std::make_pair(key, res));
return res;
}
Real GsrProcess::G(Time t, Time w, Real) const {
QL_REQUIRE(w >= t, "G(t,w) should be called with w ("
<< w << ") not lesser than t (" << t << ")");
QL_REQUIRE(t >= 0.0 && w <= getForwardMeasureTime(),
"G(t,w) should be called with (t,w)=("
<< t << "," << w << ") in Range [0,"
<< getForwardMeasureTime() << "].");
std::pair<Real, Real> key;
key = std::make_pair(w, t);
std::map<std::pair<Real, Real>, Real>::const_iterator k =
cache5_.find(key);
if (k != cache5_.end())
return k->second;
Real res = 0.0;
for (int i = lowerIndex(t); i <= upperIndex(w) - 1; i++) {
Real res2 = 1.0;
for (int j = lowerIndex(t); j <= i - 1; j++) {
res2 *= exp(-rev(j) * (time2(j + 1) - flooredTime(j, t)));
}
res2 *= revZero(i) ? cappedTime(i + 1, w) - flooredTime(i, t)
: (1.0 - exp(-rev(i) * (cappedTime(i + 1, w) -
flooredTime(i, t)))) /
rev(i);
res += res2;
}
cache5_.insert(std::make_pair(key, res));
return res;
}
const int GsrProcess::lowerIndex(Time t) const {
return std::upper_bound(times_.begin(), times_.end(), t) -
times_.begin();
}
const int GsrProcess::upperIndex(Time t) const {
if (t < QL_EPSILON)
return 0;
return std::upper_bound(times_.begin(), times_.end(), t - QL_EPSILON) -
times_.begin() + 1;
}
const Real GsrProcess::cappedTime(Size index, Real cap) const {
return cap != Null<Real>() ? std::min(cap, time2(index)) : time2(index);
}
const Real GsrProcess::flooredTime(Size index, Real floor) const {
return floor != Null<Real>() ? std::max(floor, time2(index))
: time2(index);
}
const Real GsrProcess::time2(Size index) const {
if (index == 0)
return 0.0;
if (index > times_.size())
return getForwardMeasureTime(); // FIXME how to ensure that forward
// measure time is geq all times
// given
return times_[index - 1];
}
const Real GsrProcess::vol(Size index) const {
if (index >= vols_.size())
return vols_.back();
return vols_[index];
}
const Real GsrProcess::rev(Size index) const {
if (index >= reversions_.size())
return reversions_.back();
return reversions_[index];
}
const bool GsrProcess::revZero(Size index) const {
if (index >= revZero_.size())
return revZero_.back();
return revZero_[index];
}
}
|